Skip to main content
Log in

Thermodynamics of NaCl in Aqueous Ethylene Glycol, Acetonitrile, and 1,4-Dioxane Mixtures from Emf Measurements at 25°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The electromotive force of the amalgam cell {NaxHg1-x‖NaCl(m)‖AgCl‖Ag} has been measured at 25°C as a function of the mole fraction x of Na in amalgams and of the molality m of NaCl in (ethylene glycol + water), (acetonitrile + water), and (1,4-dioxane + water) mixed solvents, containing up to 0.8 mass fraction of the organic component, with relative permittivities ε ≥ 27. The relevant standard molal electromotive forces \(E_{\text{m}}^ \circ \) have been determined, together with the mean molal activity coefficient γ± of NaCl as a function of its molality. In the case of (ethylene glycol + water) mixtures, a linear dependence of \(E_{\text{m}}^ \circ \) on the mass fraction of ethylene glycol is observed, which is quite unusual, The Debye-Hückel equation is applicable successfully over the whole range of molalities explored, which extends to the vicinity of the solubility limit of NaCl in each solvent. The dependence of the standard emf on the logarithm of the volume fraction of water in the aqueous-organic solvent mixtures have been analyzed in terms of Feakins and French's theory, leading to a primary hydration number 7.2 for NaCl, in good agreement with previous results employing different methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Mussini and F. Mazza, Electrochim. Acta, 32, 855 (1987).

    Google Scholar 

  2. D. Feakins and C. M. French, J. Chem. Soc. 663 (1957).

  3. D. J. G. Ives and G. J. Janz, Reference Electrodes—Theory and Practice, (Academic Press, New York, 1961) (pp. 191–14).

    Google Scholar 

  4. A. Basili, P. R. Mussini, T. Mussini, and S. Rondinini, J. Chem. Thermodyn. 28, 923 (1996).

    Google Scholar 

  5. A. Basili, P. R. Mussini, T. Mussini, and S. Rondinini, Ber. Bunsenges. Phys. Chem., 101, 842 (1997).

    Google Scholar 

  6. G. J. Janz, Reference Electrodes—Theory and Practice, (Academic Press, New York, 1961) Ref. 3}, pp. 203–207.

    Google Scholar 

  7. T. Mussini, P. Longhi, and S. Rondinini, Pure Appl. Chem. 57, 169 (1985), and literature cited therein.

    Google Scholar 

  8. T. Mussini and A. Pagella, J. Chem. Eng. Data 16, 49 (1971).

    Google Scholar 

  9. E. Hückel, Physik. Z. 26, 93 (1925).

    Google Scholar 

  10. D. I. Hitchcock, J. Am. Chem. Soc. 50, 2076 (1928).

    Google Scholar 

  11. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, 2nd rev. edn., (Butterworths, London, 1965), pp. 457, 458.

    Google Scholar 

  12. B. B. Owen, J. Am. Chem. Soc. 54, 1758 (1932).

    Google Scholar 

  13. M. Born, Z. Physik 1, 45 (1920).

    Google Scholar 

  14. T. Mussini, P. Longhi, and P. Giammario, Chim. Ind. (Milan) 54, 3 (1972).

    Google Scholar 

  15. T. Mussini and P. Longhi, Chim. Ind. (Milan) 54, 1093 (1972).

    Google Scholar 

  16. P. R. Mussini, T. Mussini, A. Perelli, and S. Rondinini, J. Chem. Thermodyn. 25, 1055 (1993).

    Google Scholar 

  17. W. J. Hamer and Y. C. Wu, J. Phys. Chem. Ref. Data, 1, 1047 (1972).

    Google Scholar 

  18. J. O'M. Bockris and A. K. N. Reddy, Modern Electrochemistry, Vol. 1, (Plenum Press, New York, 1970) p. 131.

    Google Scholar 

  19. A. M. Azzam, Thesis, p. 441, London, 1949, Z. Elektrochem. 58, 889 (1954).

    Google Scholar 

  20. R. Cavaliere, P. Longhi, T. Mussini, and S. Negha. Gazz. Chim. Ital. 109, 495 (1979).

    Google Scholar 

  21. P. Longhi, P. R. Mussini, S. Rondinini, and G. Tiella, Ann. Chim. (Rome), 78, 309 (1988).

    Google Scholar 

  22. P. R. Mussini, T. Mussini, and S. Rondinini, Ann. Chim. (Rome), 78, 299 (1988).

    Google Scholar 

  23. T. Mussini, P. Longhi, S. Rondinini, M. Tettamanti, and A. K. Covington, Anal. Chim. Acta, 174, 331 (1985).

    Google Scholar 

  24. S. Rondinini, C. Confalonieri, P. Longhi, and T. Mussini, Electrochim. Acta. 30, 981 (1985).

    Google Scholar 

  25. F. E. Critchfielfd, J. A. Gibson, and J. L. Hall, J. Am. Chem. Soc., 75, 1991 (1953).

    Google Scholar 

  26. T. Mussini, A. K. Covington, M. Cicognini, P. Longhi, and S. Rondinini, Ann. Chim. (Rome), 72, 639 (1982); G. Akerlöf, and O. A. Short, J. Amer. Chem. Soc. 58, 1241 (1936); F. Hovorka, R. A. Schaefer, and D. Dreisbach, J. Amer. Chem. Soc., 58, 2264 (1936); N. C. Das and P. B. Das, J. Chem. Soc. Faraday Trans. I, 74, 22 (1978); H. S. Harned and C. Calmon, J. Amer. Chem. Soc. 60, 334 (1938); G. Pistoia, Ric. Sci., 37, 731 (1967); M. Goffredi and R. Triolo, Ric. Sci., 37, 1137 (1967); F. Accascina and A. D'Aprano, Gazz. Chim. Ital. (Rome), 95, 1420 (1965); J. C. Justice, R. Bury, and C. Treiner, J. Chim. Phys. 65, 1708 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ceccattini, P.D., Mussini, P.R. & Mussini, T. Thermodynamics of NaCl in Aqueous Ethylene Glycol, Acetonitrile, and 1,4-Dioxane Mixtures from Emf Measurements at 25°C. Journal of Solution Chemistry 26, 1169–1186 (1997). https://doi.org/10.1023/A:1022981107236

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022981107236

Navigation