Skip to main content
Log in

Mass Spectrometric Observations of Enhanced Rates of Association Reactions: nLiF = Li n F n (n = 2, 3) at LiF Single Crystal Surfaces

  • Published:
Journal of Materials Synthesis and Processing

Abstract

A mass spectrometric method was used to study the kinetics of lithium fluoride single-crystal sublimation. In electron impact ionization mass spectra, Li+, LiF+, Li2F+, and Li3 F +2 ions originating from monomer (LiF), dimer (Li2F2), and trimer (Li3F3) molecular precursors were detected in the temperature range 970–1070 K. The dimer-to-monomer and trimer-to-monomer flux ratios were found to increase progressively with increasing temperature and also in comparison with those measured under equilibrium of crystalline LiF with its saturated vapor. The temperature dependence of the ion current ratio I(Li2F+)/I(Li+) measured over the interval 916–1087 K was shown to pass reproducibly through a minimum at about 975 K. The enhancement of the rate of association reactions at LiF crystal surfaces is discussed in light of the terrace-ledge-kink model of vaporization and surface charge concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. K. Burton, N. Cabrera, and F. C. Frank, Phil. Trans. R. Soc. London A243, 299 (1951).

    Google Scholar 

  2. D. W. Short, R. A. Rapp, and J. P. Hirth, J. Chem. Phys. 57, 1381 (1972).

    Google Scholar 

  3. J. E. McVicker, R. A. Rapp, and J. P. Hirth, J. Chem. Phys. 63, 2645 (1975).

    Google Scholar 

  4. Z. A. Munir and J. P. Hirth, J. Electron. Mater. 6, 409 (1977).

    Google Scholar 

  5. I. V. Samarasekera and Z. A. Munir, High Temp. Sci. 10, 155 (1978).

    Google Scholar 

  6. R. H. Wagoner and J. P. Hirth, J. Chem. Phys. 67, 3074 (1977).

    Google Scholar 

  7. S. T. Lam and Z. A. Munir, J. Cryst. Growth 47, 373 (1979); J. Cryst. Growth 51, 227 (1981).

    Google Scholar 

  8. L. S. Seacrist and Z. A. Munir, High Temp. Sci. 3, 340 (1971).

    Google Scholar 

  9. R. B. Leonard and A. W. Searcy, J. Appl. Phys. 42, 4047 (1971).

    Google Scholar 

  10. G. A. Somorjai and J. E. Lester, J. Chem. Phys. 43, 1450 (1965).

    Google Scholar 

  11. J. E. Lester and G. A. Somorjai, J. Chem. Phys. 49, 2940 (1968).

    Google Scholar 

  12. Z. A. Munir and T. T. Nguyen, Phil. Mag. A 47, 105 (1983).

    Google Scholar 

  13. Z. A. Munir, Res Mechanica 11, 1 (1984).

    Google Scholar 

  14. Z. A. Munir and A. A. Yeh, Phil. Mag. A 56, 63 (1987).

    Google Scholar 

  15. M. F. Butman, A. A. Smirnov, and L. S. Kudin, Appl. Surf. Sci. 126, 185 (1998).

    Google Scholar 

  16. V. P. Glushko, Termodinamicheskie Svoistva Individual'nykh Veshchestv [Thermodynamic Properties of Individual Substances], Vol. 4 (Nauka, Moscow, 1984).

    Google Scholar 

  17. J. Berkowitz, H. A. Tasman, and W. A. Chupka, J. Chem. Phys. 36, 2170 (1962).

    Google Scholar 

  18. L. N. Sidorov and A. S. Alikhanyan, Zhur. Fiz. Khim. 45, 506 (1971).

    Google Scholar 

  19. A. S. Alikhanyan, V. B. Sholtz, and L. N. Sidorov, Vestnik, Moskov. Univ. 6, 639 (1972).

    Google Scholar 

  20. L. N. Gorokhov, Doctor of Chemistry Thesis (Moscow University, Moscow 1972).

  21. P. Mohazzabi and A. W. Searcy, Int. J. Mass Spectrom. Ion Phys. 24, 469 (1977).

    Google Scholar 

  22. R. T. Grimley, J. A. Forsman, and Q. G. Grindstaff, J. Phys. Chem. 82, 632 (1978).

    Google Scholar 

  23. G. M. Rothberg, M. Eisenstadt, and P. Kusch, J. Chem. Phys. 30, 517 (1959).

    Google Scholar 

  24. Z. A. Munir, J. Mater. Sci. 22, 2221 (1987).

    Google Scholar 

  25. J. Berkowitz and W. A. Chupka, J. Chem. Phys. 20, 653 (1958).

    Google Scholar 

  26. R. F. Porter and R. C. Scoonmaker, J. Chem. Phys. 29, 1070 (1958).

    Google Scholar 

  27. H. Dabringhaus and H. J. Meyer, J. Crystal Growth 40, 139 (1977).

    Google Scholar 

  28. H. Dabringhaus and H. J. Meyer, J. Crystal Growth 61, 91 (1983).

    Google Scholar 

  29. H. Dabringhaus and H. J. Meyer, J. Crystal Growth 61, 95 (1983).

    Google Scholar 

  30. R. Helmrich and H. Dabringhaus, J. Crystal Growth 169, 279 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butman, M.F., Kudin, L.S., Smirnov, A.A. et al. Mass Spectrometric Observations of Enhanced Rates of Association Reactions: nLiF = Li n F n (n = 2, 3) at LiF Single Crystal Surfaces. Journal of Materials Synthesis and Processing 7, 113–118 (1999). https://doi.org/10.1023/A:1021821831104

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021821831104

Navigation