Skip to main content
Log in

Fokker–Planck Equations as Scaling Limits of Reversible Quantum Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a quantum particle moving in a harmonic exterior potential and linearly coupled to a heat bath of quantum oscillators. Caldeira and Leggett derived the Fokker–Planck equation with friction for the Wigner distribution of the particle in the large-temperature limit; however, their (nonrigorous) derivation was not free of criticism, especially since the limiting equation is not of Lindblad form. In this paper we recover the correct form of their result in a rigorous way. We also point out that the source of the diffusion is physically restrictive under this scaling. We investigate the model at a fixed temperature and in the large-time limit, where the origin of the diffusion is a cumulative effect of many resonant collisions. We obtain a heat equation with a friction term for the radial process in phase space and we prove the Einstein relation in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Arnold, J. L. Lopez, P. A. Markowich, and J. Soler, An analysis of quantum Fokker- Planck models: A Wigner function approach, preprint (1999).

  2. A. Arai, Long-time behaviour of an electron interacting with a quantized radiation field, J. Math. Phys. 32(8):2224–2242 (1991).

    Google Scholar 

  3. C. Boldrighini, L. Bunimovich, and Y. Sinai, On the Boltzmann equation for the Lorentz gas, J. Stat. Phys. 32:477–501 (1983).

    Google Scholar 

  4. N. Ben Abdallah and P. Degond, On a hierarchy of macroscopic models for semi-conductors, J. Math. Phys. 37(7):3306–3333 (1996).

    Google Scholar 

  5. A. O. Caldeira and A. J. Leggett, Path-integral approach to quantum Brownian motion, Physica A 121:587–616 (1983). Erratum: 130:374 (1985).

    Google Scholar 

  6. A. O. Caldeira and A. J. Leggett, Quantum tunnelling in a dissipative system, Ann. Phys. 149:374–456 (1983).

    Google Scholar 

  7. F. Castella, On the derivation of a quantum Boltzmann equation from the periodic Von-Neumann equation, Mod. Math. An. Num. 33(2):329–349 (1999).

    Google Scholar 

  8. F. Castella and P. Degond, From the Von-Neumann equation to the quantum Boltzmann equation in a deterministic framework, C. R. Acad. Sci., Sér. I 329:231–236 (1999) and preprint (1999).

    Google Scholar 

  9. Y.-C. Chen, J. L. Lebowitz, and C. Liverani, Dissipative quantum dynamics in a boson bath, Phys. Rev. B 40:4664–4682 (1989).

    Google Scholar 

  10. C. Cohen-Tannoudji, B. Diu, and F. Laloë, Mé canique Quantique, I et II, Enseignement des Sciences, Vol. 16 (Hermann, 1973).

  11. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Processus d'interaction entre photons et atomes, Savoirs actuels (Intereditions-Editions du CNRS, 1988).

  12. H. Dekker, Multilevel tunneling and coherence: dissipative spin-hopping dynamics at finite temperatures, Phys. Rev. A 44(4):2314–2323 (1991).

    Google Scholar 

  13. P. de Smedt, D. Dürr, J. L. Lebowitz, and C. Liverani, Quantum system in contact with a thermal environment: Rigorous treatment of a simple model, Commun. Math. Phys. 120:195–231 (1988).

    Google Scholar 

  14. E. B. Davies, The harmonic oscillator in a heat bath, Commun. Math. Phys. 33:171–186 (1973).

    Google Scholar 

  15. E. B. Davies, Markovian master equations, Commun. Math. Phys. 39:91–110 (1974).

    Google Scholar 

  16. T. Dittrich, P. Hänggi, G. L. Ingold, B. Kramer, G. Schön, and W. Zwerger, Quantum Transport and Dissipation (Wiley-VCH, 1998).

  17. L. Diosi, On high-temperature Markovian equation for quantum Brownian motion, Europhys. Lett. 22(1):1–3 (1993).

    Google Scholar 

  18. L. Diosi, Caldeira-Leggett master equation and medium temperatures, Physica A 199: 517–526 (1993).

    Google Scholar 

  19. L. Diosi, N. Gisin, J. Haliwell, and I. C. Percival, Decoherent histories and quantum state diffusion, Phys. Rev. Lett. 74(2):203–207 (1995).

    Google Scholar 

  20. D. Dürr, S. Goldstein, and J. Lebowitz, Asymptotic motion of a classical particle in a random potential in two dimensions: Landau model, Commun. Math. Phys. 113:209–230 (1987).

    Google Scholar 

  21. L. Erdős and H. T. Yau, Linear Boltzmann equation as scaling limit of quantum Lorenz gas, Advances in Differential Equations and Mathematical Physics. Contemporary Mathe matics 217:137–155 (1998).

    Google Scholar 

  22. L. Erdős and H. T. Yau, Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation, Comm. Pure Appl. Math. 53:667–735 (2000).

    Google Scholar 

  23. L. Erdős and H. T. Yau, Linear Boltzmann equation for electron transport in a weakly coupled phonon field, in preparation.

  24. R. Esposito, M. Pulvirenti, and A. Teta, The Boltzmann equation for a one-dimensional quantum Lorentz gas, Commun. Math. Phys. 204:619–649 (1999).

    Google Scholar 

  25. R. P. Feynman and A. Hibbs, Quantum Mechanics and Path Integrals (McGraw Hill, New York, 1965).

    Google Scholar 

  26. R. P. Feynman and F. L. Vernon, The theory of a general quantum system interacting with a linear dissipative system, Ann. Phys. 24:118–173 (1963).

    Google Scholar 

  27. G. W. Ford, M. Kac, and P. Mazur, Statistical mechanics of assemblies of coupled oscillators, J. Math. Phys. 6(4):504-515.

  28. W. Fischer, H. Leschke, and P. Müller, On the averaged quantum dynamics by white-noise Hamiltonian with and without dissipation, Ann. Physik 7:59–100 (1998).

    Google Scholar 

  29. G. Gallavotti, Rigorous theory of the Boltzmann equation in the Lorentz gas, Nota interna n. 358 (Univ. di Roma, 1970).

  30. P. Gérard, P. A. Markowich, N. Mauser, and F. Poupaud, Homogenization limits and Wigner transforms, Comm. Pure Appl. Math. L:323–379 (1997).

    Google Scholar 

  31. Z. Haba, Classical limit of quantum dissipative systems, Lett. Math. Phys. 44:121–130 (1998).

    Google Scholar 

  32. K. Hepp and E. H. Lieb, The laser: A reversible quantum dynamical system with irreversible classical microscopic motion, in Dynamical Systems, Theory and Applications (Rencontres, Battelle Res. Inst., Seattle, 1974), Lecture Notes in Phys., Vol. 38, pp. 178–207 (Springer, 1975).

    Google Scholar 

  33. T. G. Ho, L. J. Landau, and A. J. Wilkins, On the weak coupling limit for a Fermi gas in a random potential, Rev. Math. Phys. 5(2):209–298 (1993).

    Google Scholar 

  34. F. Haake and R. Reibold, Strong-damping and low-temperature anomalies for the harmonic oscillator, Phys. Rev. A 32(4):2462–2475 (1985).

    Google Scholar 

  35. V. Jakšić and C.-A. Pillet, Spectral theory of thermal relaxation, J. Math. Phys. 38: 1757–1780 (1997).

    Google Scholar 

  36. A. M. Il'in and R. Z. Kas'minskii, On equations of Brownian motion, Theory Probab. Appl. (USSR) 9:421–444 (1964).

    Google Scholar 

  37. J. B. Keller, G. Papanicolaou, and L. Ryzhik, Transport equations for elastic and other waves in random media, Wave Motion 24(4):327–370 (1996).

    Google Scholar 

  38. H. Kesten and G. Papanicolaou, A limit theorem for stochastic acceleration, Comm. Math. Phys. 78:19–63 (1980).

    Google Scholar 

  39. L. J. Landau, Observation of quantum particles on a large space-time scale, J. Stat. Phys. 77(1-2):259–309 (1994).

    Google Scholar 

  40. O. E. Lanford, On a derivation of the Boltzmann equation, Astérisque 40:117–137 (1976)

    Google Scholar 

  41. J. T. Lewis and H. Maassen, Hamiltonian models of classical and quantum stochastic processes, in Quantum Probability and Applications to the Quantum Theory of Irreversible Processes (Villa Mondragone, 1982), Lecture Notes in Math., Vol. 1055, pp. 245–276 (Springer, 1984).

  42. E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Course of Theoretical Physics, Vol. 10, L. D. Landau and E. M. Lifshitz, eds. (Pergamon Press, 1981).

  43. G. Lindblad, On generators of quantum dynamical semigroups, Comm. Math. Phys. 48:119–130 (1999).

    Google Scholar 

  44. P. L. Lions and Th. Paul, Sur les measures de Wigner, Revista Mat. Iberoamericana 9:533–618 (1993).

    Google Scholar 

  45. P. A. Markowich, C. A. Ringhofer, and C. Schmeiser, Semiconductor Equations (Springer, 1990).

  46. F. Nier, Asymptotic analysis of a scaled Wigner equation and quantum scattering, Transp. Theor. Stat. Phys. 24(4-5):591–629 (1995).

    Google Scholar 

  47. F. Nier, A semi-classical picture of quantum scattering, Ann. Sci. Ec. Norm. Sup., Sér. 4 29:149–183 (1996).

    Google Scholar 

  48. J. A. Reissland, The Physics of Phonons (Wiley Interscience, Wiley, 1972).

    Google Scholar 

  49. H. Spohn, Derivation of the transport equation for electorns moving through random impurities, J. Stat. Phys. 17:385–412 (1977).

    Google Scholar 

  50. H. Spohn, Kinetic equations from Hamiltonian dynamics: Markovian limits, Rev. Mod. Phys. 53(3):569–615 (1980).

    Google Scholar 

  51. H. Spohn, Large Scale Dynamics of Interacting Particles (Springer, Berlin, 1991).

    Google Scholar 

  52. W. G. Unruh and W. H. Zurek, Reduction of a wave packet in quantum Brownian motion, Phys. Rev. D 40(4):1071–1094 (1989).

    Google Scholar 

  53. U. Weiss, Quantum Dissipative Systems (World Scientific, 1993).

  54. E. P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40: 749–759 (1932).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castella, F., Erdős, L., Frommlet, F. et al. Fokker–Planck Equations as Scaling Limits of Reversible Quantum Systems. Journal of Statistical Physics 100, 543–601 (2000). https://doi.org/10.1023/A:1018667323830

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018667323830

Navigation