Skip to main content
Log in

Discrete dynamics and metastability: Mean first passage times and escape rates

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The problem of escape from a domain of attraction is applied to the case of discrete dynamical systems possessing stable and unstable fixed points. In the presence of noise, the otherwise stable fixed point of a nonlinear map becomes metastable, due to noise-induced hopping events, which eventually pass the unstable fixed point. Exact integral equations for the moments of the first passage time variable are derived, as well as an upper bound for the first moment. In the limit of weak noise, the integral equation for the first moment, i.e., the mean first passage time (MFPT), is treated, both numerically and analytically. The exponential leading part of the MFPT is given by the ratio of the noise-induced invariant probability at the stable fixed point and unstable fixed point, respectively. The evaluation of the prefactor is more subtle: It is characterized by a jump at the exit boundaries, which is the result of a discontinuous boundary layer function obeying an inhomogeneous integral equation. The jump at the boundary is shown to be always less than one-half of the maximum value of the MFPT. On the basis of a clear-cut separation of time scales, the MFPT is related to the escape rate to leave the domain of attraction and other transport coefficients, such as the diffusion coefficient. Alternatively, the rate can also be obtained if one evaluates the current-carrying flux that results if particles are continuously injected into the domain of attraction and captured beyond the exit boundaries. The two methods are shown to yield identical results for the escape rate of the weak noise result for the MFPT, respectively. As a byproduct of this study, we obtain general analytic expressions for the invariant probability of noisy maps with a small amount of nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. H. Weiss, ed.,J. Stat. Phys. 42:1–246 (1986).

  2. P. Talkner and P. HÄnggi,Phys. Rev. A 29:768 (1984).

    Google Scholar 

  3. P. Talkner and D. Ryter, inNoise in Physical Systems and l/f Noise, M. Savelli, G. Lecoy, and J. P. Nougier, eds. (Elsevier, New York, 1983).

    Google Scholar 

  4. R. M. May,Nature 261:459 (1976).

    Google Scholar 

  5. M. J. Feigenbaum,Los Alamos Science (Summer 1980).

  6. S. Grossmann, inNon-Equilibrium Cooperative Phenomena in Physics and Related Fields, Vol. B116,Discrete Nonlinear Dynamics, M. G. Velarde, ed. (Plenum Press, New York, 1984), pp. 413–435.

    Google Scholar 

  7. P. Bergé, Y. Pomeau, and Ch. Vidal,L'Ordre dans le Chaos (Hermann, Paris, 1984); H. G. Schuster,Deterministic Chaos (VCH, Weinheim, 1984).

    Google Scholar 

  8. J. Guckenheimer and P. Holmes,Nonlinear Oscillation, Dynamical Systems, and Bifurcations of Vector Fields (Springer, Berlin, 1983).

    Google Scholar 

  9. L. D. Landau and E. M. Lifschitz,Mechanics (Pergamon Press, New York, 1957).

    Google Scholar 

  10. T. Geisel and J. Nierwetberg,Phys. Rev. Lett. 48:7 (1982);Phys. Rev. A 29:2305 (1984).

    Google Scholar 

  11. M. Schell, S. Fraser, and R. Kapral,Phys. Rev. A 26:504 (1982).

    Google Scholar 

  12. H. Fujisaka and S. Grossmann,Z. Physik B 48:261 (1982);Phys. Rev. A 26:1779 (1982).

    Google Scholar 

  13. R. F. Voss,Phys. Rev. Lett. 50:1329 (1983).

    Google Scholar 

  14. I. Goldhirsch, Y. Imry, G. Wasserman, and E. Ben-Jacob,Phys. Rev. B 29:1218 (1984).

    Google Scholar 

  15. R. L. Kautz,J. Appl. Phys. 52:3528 (1981);52:6241 (1981); D. D'Humieres, M. R. Beasly, B. A. Huberman, and A. Libchaber,Phys. Rev. A 26:3483 (1982);Phys. Rev. Lett. 50:1328 (1982).

    Google Scholar 

  16. R. F. Miracky, M. H. Devoret, and J. Clarke,Phys. Rev. A 31:2509 (1985).

    Google Scholar 

  17. F. T. Arecchi and F. Lisi,Phys. Rev. Lett. 49:94 (1982); F. T. Arecchi and A. Califano,Phys. Lett. 101A:443 (1984); F. T. Arecchi, R. Badii, and A. Politi,Phys. Rev. A 32:402 (1985).

    Google Scholar 

  18. C. Greborgi, E. Ott, and J. A. Yorke,Phys. Rev. Lett. 48:1507 (1982).

    Google Scholar 

  19. F. T. Arecchi, R. Badii, and A. Politi,Phys. Lett. 103A:3 (1984).

    Google Scholar 

  20. R. V. Jensen and E. R. Jessup,J. Stat. Phys. 43:369 (1986).

    Google Scholar 

  21. E. G. Gwinn and R. M. Westervelt,Phys. Rev. Lett. 54:1613 (1985).

    Google Scholar 

  22. L. Glass and R. Perez,Phys. Rev. Lett. 48:1772 (1982); M. J. Feigenbaum, L. P. Kadanoff, and S. J. Shenker,Physica 5D:370 (1982); D. Rand, S. Ostlund, J. Sethna, and E. Siggia,Phys. Rev. Lett. 49:132 (1982);Physica 6D:303 (1984).

    Google Scholar 

  23. M. H. Jensen, P. Bak, and T. Bohr,Phys. Rev. Lett. 50:1637 (1983);Phys. Rev. A 30:1960; 1970 (1984).

    Google Scholar 

  24. P. Bak, T. Bohr, and M. H. Jensen,Physica Scripta T9:50 (1985).

    Google Scholar 

  25. S. Fraser, E. Celarier, and R. Kapral,J. Stat. Phys. 33:341 (1983).

    Google Scholar 

  26. S. Grossmann and S. Thomae,Z. Naturforsch. 32A:1353 (1977); H. Fujisaka and T. Yamada,Z. Naturforsch. 33A:1455 (1978); S.-J. Chang and J. Wright,Phys. Rev. A 23:1419 (1981); Y. Oono and Y. Takahashi,Progr. Theor. Phys. 63:1804 (1980).

    Google Scholar 

  27. H. Haken and G. Mayer-Kress,Phys. Lett. 84A:159 (1981);Z. Physik B 43:185 (1981).

    Google Scholar 

  28. H. Haken and A. Wunderlin,Z. Physik B 46:181 (1982).

    Google Scholar 

  29. P. HÄnggi and P. Talkner,Phys. Rev. A 32:1934 (1985).

    Google Scholar 

  30. J. Troe,J. Chem. Phys. 66:4745 (1977).

    Google Scholar 

  31. G. H. Weiss and A. Szabo,Physica 119A:569 (1983).

    Google Scholar 

  32. C. Knessl, B. J. Matkowsky, Z. Schuss, and C. Tier,J. Stat. Phys. 42:169 (1986).

    Google Scholar 

  33. I. N. Bronstein and K. A. Semendyayev,Handbook of Mathematics (Van Nostrand, New York, 1986).

    Google Scholar 

  34. B. J. Matkowsky and Z. Schuss,SIAM J. Appl. Math. 33:365 (1977);40:242 (1981);42:835 (1982); inLecture Notes in Mathematics, No. 985,Asymptotic Analysis II, F. ver Hulst, ed. (Springer-Verlag, Berlin, 1983), pp. 2–34.

    Google Scholar 

  35. Z. Schuss and B. J. Matkowsky,SIAM J. Apl. Math. 35:604 (1979).

    Google Scholar 

  36. H. A. Kramers,Physica 7:284 (1940).

    Google Scholar 

  37. P. HÄnggi,J. Stat. Phys. 42:105 (1986); Addendum,44:1003 (1986).

    Google Scholar 

  38. P. HÄnggi, H. Grabert, P. Talkner, and H. Thomas,Phys. Rev. A 29:371 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talkner, P., HÄnggi, P., Freidkin, E. et al. Discrete dynamics and metastability: Mean first passage times and escape rates. J Stat Phys 48, 231–254 (1987). https://doi.org/10.1007/BF01010408

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01010408

Key words

Navigation