Skip to main content
Log in

Apamin: A highly selective and effective blocker of calcium-dependent potassium conductance

  • Reviews
  • Published:
Neurophysiology Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. L. V. Baidan, I. A. Vladimirova, G. A. Taran, and A. I. Miroshnikov, “Apamin action on synaptic transmission at different types of synapses” Dokl. Akad. Nauk SSSR,241, No. 5, 1224–1227 (1978).

    Google Scholar 

  2. L. V. Baidan and S. M. Tishkin, “Effects of apamin on synaptic transmission and inhibitory influence of ATP and noradrenaline of the guinea pig colon,” Fiziol. Zh.,29, No. 2, 181–185 (1983).

    Google Scholar 

  3. S. V. Vasilenko, S. V. Komissarenko, N. V. Prochukhan, et al., “Ultrastructural location of binding sites in smooth muscle of the guinea pig intestine,” Neurofiziologiya,17, No. 6, 824–827 (1985).

    Google Scholar 

  4. I. A. Vladimirova, and M. F. Shuba, “Effects of strychnine, hydrastine, and apamin on synaptic transmission in smooth muscle cells,” Neirofiziologiya,10, No. 3, 295–299 (1978).

    Google Scholar 

  5. I. A. Vladimirova and M. F. Shuba, “Synaptic processes in smooth muscle,” Neirofiziologiya,16, No. 3, 307–319 (1984).

    Google Scholar 

  6. V. Ya. Ganitkevich, L. V. Baidan, S. M. Tishkin, and M. F. Shuba, “Properties of synaptic currents during non-adrenergic inhibition of smooth muscle cells in the guinea pig large intestine,” Neurofiziologiya,15, No. 6, 624–631 (1983).

    Google Scholar 

  7. V. P. Zagorodnyuk and M. F. Shuba, “Nature of non-adrenergic inhibition in smooth muscle of the human intestine,” Neirofiziologiya,18, No. 3, 373–381 (1986).

    Google Scholar 

  8. P. G. Kostyuk, Calcium and Cell Excitability [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  9. N. G. Kochemasova, “Effect of apamin on generation of action potentials in smooth muscle cells of the ureter,” Fiziol. Zh.,29, No. 2, 218–221 (1983).

    Google Scholar 

  10. A. I. Miroshnikov, E. G. Emenova, A. B. Kudelin, et al., “Research into physicochemical characteristics of the neurotoxin apamin from venom of the honeybeeApis mellifica,” Bioorg. Khimiya,4, No. 8, 1022–1028 (1978).

    Google Scholar 

  11. A. V. Romanenko, L. V. Baidan, A. G. Khalmuradov, and M. F. Shuba, “Mechanism underlying action of vitamin PP and nicotinic nucleotides on neuromuscular transmission in the guinea pig taenia coli,” Dokl. Akad. Nauk SSSR,255, No. 2, 493–496 (1980).

    Google Scholar 

  12. S. M. Tishkin, L. V. Baidan, and M. F. Shuba, “Ionic mechanisms underlying the excitatory action of ATP and noradrenaline on smooth muscle cells,” Fiziol. Zh.,27, No. 4, 521–526 (1981).

    Google Scholar 

  13. L. V. Baidan, S. M. Tishkin, and M. F. Shuba, “Possible mechanism of adrenergic and non-adrenergic inhibition of intestinal smooth muscle cells,” Pflügers Arch.,403, No. 3, 429–432 (1985).

    Google Scholar 

  14. B. Banks, G. M. Brown, G. M. Burgess, et al., “Apamin blocks certain neurotransmitter-induced increases in potassium permeability,” Nature,282, No. 5707, 415–417 (1979).

    Google Scholar 

  15. V. Bauer and H. Kuriyama, “The nature of non-cholinergic non-adrenergic transmission in longitudinal and circular muscles of the guinea-pig ileum,” J. Physiol.,332, 375–391 (1982).

    Google Scholar 

  16. N. Bkaily, N. Sperelakis, J. F. Renaug, and M. D. Payet, “Apamin, a highly specific Ca2+ blocking agent, in heart muscle,” Am. J. Physiol.,248, No. 6, H691-H967 (1985).

    Google Scholar 

  17. A. L. Blatz and K. L. Magleby, “Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle,” Nature,323, No. 6090, 718–720 (1986).

    Google Scholar 

  18. D. A. Brown, A. Constanti, and P. R. Adams, “Ca-activated K+ current in vertebrate sympathetic neurones,” Cell Calc.,4, No. 1, 407–420, (1983).

    Google Scholar 

  19. G. M. Burgess, M. Claret, and D. H. Jenkinson, “Effects of quinine and apamin on the Ca-dependent K+ permeability of mammalian hepatocytes and red cells,” J. Physiol.,317, 67–90 (1981).

    Google Scholar 

  20. R. A. Bywater, M. Holman, and G. Taylor, “Atropine-resistant depolarization in guineapig small intestine,” J. Physiol.,316, 369–379 (1981).

    Google Scholar 

  21. R. Coats, “Effects of apamin on α-adrenergic mediated changes in plasma potassium in guinea-pig,” Br. J. Pharmacol.,80, No. 1, 573–580 (1983).

    Google Scholar 

  22. C. Cognard, F. Traore, D. Potreau, and G. Raymond, “Effects of apamin on the outward potassium current of isolated frog skeletal muscle fibres,” Pflügers Arch.,402, No. 1, 222–224 (1984).

    Google Scholar 

  23. S. N. Cook, D. H. Haylett, and P. N. Strong, “High affinity binding of (125I) monoiodapamin to isolated guinea-pig hepatocytes,” FEBS Lett.,152, No. 2, 265–269 (1983).

    Google Scholar 

  24. S. N. Cook and D. H. Haylett, “Effects of apamin, quinine and neuromuscular blockers on Ca-activated potassium channels in guinea-pig hepatocytes,” J. Physiol.,358, 373–394 (1985).

    Google Scholar 

  25. M. Costa, J. B. Furness, and C. M. Humphreys, “Apamin distinguishes two types of relaxation mediated by enteric nerves in the guinea-pig gastrointestinal tracts,” Naunyn-Schmiedebergs Arch. Pharmakol.,332, No. 1, 79–88 (1986).

    Google Scholar 

  26. E. E. Daniel, L. P. Helmy-Elkony, A. Jager, and M. S. Kannan, “Neither a purine nor VIP is the mediator of inhibitory nerves of opossum oesophageal smooth muscle,” J. Physiol.,336, 243–260 (1983).

    Google Scholar 

  27. J. W. Deitmer and R. Eckert, “Two components of Ca-dependent K+ current in identified neurones ofAplysia californica,” Pflügers Arch.,403, No. 1, 353–359 (1985).

    Google Scholar 

  28. A. Den Hertog, “Ca2+ and the α-action of catecholamines on the guinea-pig taenia coli,” J. Physiol.,316, 109–125 (1981).

    Google Scholar 

  29. A. Den Hertog, D. Pielkenrood, R. Ras, and J. Den Akker, “The contribution of Ca2+ and K+ to the α-action of adrenaline on smooth muscle cells of the portal vein, pulmonary artery and taenia caeci of the guinea-pig,” Eur. J. Pharmacol.,98, No. 1, 223–234 (1984).

    Google Scholar 

  30. J. S. Fedan, J. K. Hogaboom, and J. P. O'Donnel, “Comparison of the effects of apamin Ca2+-dependent K+ channel blocker and arylazidoaminopropionyl ATP, a P2-purinergic receptor antagonist in the guinea-pig vas deferens,” Eur. J. Pharmacol.,104, No. 1, 327–334 (1984).

    Google Scholar 

  31. A. C. Field and D. H. Jenkinson, “The effects of noradrenaline on the ion permeability of isolated mammalian hepatocytes, studied by intracellular recording,” J. Physiol.,392, 493–512 (1987).

    Google Scholar 

  32. M. Fosset, H. Schmid-Antomarchi, M. Hugues, et al., “The presence in pig brain of an endogeneous equivalent of apamin, the bee, venom peptide that specifically blocks Ca2+-dependent K+ channels,” Proc. Natl. Acad. Sci. USA,81, No. 1, 7228–7232 (1984).

    Google Scholar 

  33. C. Gardos, “Function of Ca2+ in the K+ permeability of human erythrocytes,” Biochim. Biophys. Acta,30, No. 3, 653–654 (1958).

    Google Scholar 

  34. A. Gibson and J. Tucker, “The effects of VIP and ATP on the isolated anococcygeus muscle of the mouse,” Br. J. Pharmacol.,77, No. 1, 97–103 (1982).

    Google Scholar 

  35. N. I. Gokina and A. V. Gurkovskaya, The Effect of ATP on the Contractile and Electrical Activity of the Vascular Smooth Muscle, Academic Press, Varna (1979).

    Google Scholar 

  36. E. Habermann and K. G. Reiz, “Ein Neues Verfahren zur Gewinnung der Komponenten von Bienengift Insbesondere des Zentralwirk Samen Peptides Apamin,” Biochem. Z.,341, No. 7, 451 (1965).

    Google Scholar 

  37. A. Hermann and K. Hartung, “Ca2+-activated potassium conductance in molluscan neurones,” Cell Calc.,4, No. 1, 387–405 (1983).

    Google Scholar 

  38. M. Hugues, D. Duval, P. Kitabgi, et al., “Preparation of a pure monoiododerivative to rat brain synaptosomes,” J. Biol. Chem.,257, No. 6, 2762–2769 (1982).

    Google Scholar 

  39. H. Hughes, D. Duval, H. Schmid, et al., “Specific binding and pharmacological interactions of apamin, the neurotoxin from bee venom with guinea-pig colon,” Life Sci.,31, No. 5, 437–443 (1982).

    Google Scholar 

  40. M. Hugues, G., Romey, D. Duval, et al., “Apamin as selective blocker of the Ca2+-dependent K+ channel in neuroblastoma cells: voltage clamp and biochemical characterization of the toxic receptors,” Proc. Natl. Acad. Sci., USA,79, No. 4, 1308–1312 (1982).

    Google Scholar 

  41. M. Hugues, H. Schmid, and M. Lazdunski, “Identification of a protein component of the Ca2+-dependent K+ channel by affinity labelling with apamin,” Biochem. Biophys. Res. Commun.,107, No. 4, 1577–1582 (1982).

    Google Scholar 

  42. M. Lodal, O. Lundgren, and N. Sjoquist, “The effect of apamin on non-adrenergic noncholinergic vasodilator mechanism in the intestine of the cat,” J. Physiol.,338, 207–220 (1983).

    Google Scholar 

  43. T. Kawai and M. Watanabe, “Blockade of Ca2+-activated K+ conductance by apamin in rat sympathetic neurones,” Br. J. Pharmacol.,87, No. 1, 225–232 (1986).

    Google Scholar 

  44. B. Lancaster and P. R. Adams, “After-hyperpolarization by hippocampal neurones,” J. Neurophysiol.,55, No. 3, 1268–1282 (1986).

    Google Scholar 

  45. M. Lazdunski, “Apamin, a neurotoxin specific for one class of Ca2+-dependent K+ channels,” Cell Calc.,4, No. 1, 421–428 (1983).

    Google Scholar 

  46. P. Lebrun, I. Atwater, M. Claret, et al., “Resistance to apamin of the Ca2+-activated K+-permeability in pancreatic cells,” FEBS Lett.,161, No. 1, 41–44 (1983).

    Google Scholar 

  47. A. Maas and A. Den Hertog, “The effect of apamin on the smooth muscle cells of the guinea-pig taenia coli,” Eur. J. Pharmacol.,58, No. 7, 151–156 (1979).

    Google Scholar 

  48. K. Nakao, R. Inoue, K. Yamanaka, and K. Kitamura, “Action of quinidine and apamin on after-hyperpolarization of the spike in circular smooth muscle cells of the guinea-pig ileum,” Naunyn-Schmiedebergs Arch. Pharmakol.,334, No. 4, 508–513 (1986).

    Google Scholar 

  49. P. Pennefather, B. Lancaster, P. R. Adams, and R. A. Nicoll, “Two distinct Ca2+-dependent K+ currents in bullfrog sympathetic ganglion cells,” Proc. Natl. Acad. Sci., USA,82, No. 9, 3040–3044 (1985).

    Google Scholar 

  50. G. F. Renaud, C. D. Desmulle, H. Schmid-Antomarchi, et al., “Expression of apamin receptor in muscles of patients with myotonic muscular dystrophy,” Nature,319, No. 6095, 678–690 (1986).

    Google Scholar 

  51. G. Romey, M. Hugues, H. Schmid-Antomarchi, and M. Lazdunski, “Apamin: a specific toxin to study a class of Ca2+-dependent K+ channels,” J. Physiol.,79, No. 1, 259–264 (1984).

    Google Scholar 

  52. H. Schmid-Antomarchi, G. F. Renaud, G. Romay et al., “The all-or-none role of innervation in expression of apamin receptor and of apamin-sensitive Ca2+-activated K+ channel in mammalian skeletal muscle,” Proc. Natl. Acad. Sci., USA,82, No. 7, 2188–2191 (1985).

    Google Scholar 

  53. M. J. Seagar, C. Granier, and F. Courand, “Interactions of the neurotoxin apamin with a Ca2+-activated K+ channel in primary neuronal cultures,” J. Biol. Chem.,259, No. 3, 1491–1495 (1984).

    Google Scholar 

  54. M. F. Shuba and I. A. Vladimirova, “Effect of apamin on the electrical responses of smooth muscle to ATP and to non-adrenergic, non-cholinergic nerve stimulation,” Neuroscience,5, No. 1, 853–859 (1980).

    Google Scholar 

  55. M. F. Shuba and I. A. Vladimirova, Action of Apamin on Nerve-Muscle Transmission and the Effects of ATP and Noradrenaline in Smooth Muscle, Academic Press, Budapest (1981).

    Google Scholar 

  56. T. G. Smart, “Single Ca2+-activated K+ channels recorded from cultured rat sympathetic neurones,” J. Physiol.,389, 337–360 (1987).

    Google Scholar 

Download references

Authors

Additional information

A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 6, pp. 833–846, November–December, 1988.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baidan, L.V., Zholos, A.V. Apamin: A highly selective and effective blocker of calcium-dependent potassium conductance. Neurophysiology 20, 590–600 (1988). https://doi.org/10.1007/BF02150264

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02150264

Keywords

Navigation