Skip to main content
Log in

Free fatty acids, lipid peroxidation, and lysosomal enzymes in experimental focal cerebral ischemia in primates: Loss of lysosomal latency by lipid peroxidation

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Experimental focal cerebral ischemia was produced in monkeys (Macaca radiata) by occlusion of the right middle cerebral artery (MCA). The release of the lysosomal glycosidases, β-d-hexosaminidase, α-l-fucosidase and α-d-mannosidase into the soluble fraction in the right basal ganglia of the experimental animals was measured at different periods from 30 min to 12 hr after occlusion and compared with the corresponding sham operated control animals. There was a significant increase in the released lysosomal enzymes in the MCA occluded animals at all periods and particularly at 4 hr after occlusion. The CSF from the experimental animals also showed elevated levels of hexosaminidase and fucosidase. The free fatty acids (FFA) measured in the basal ganglia at 30 min and 2 hr after occlusion showed a 100 fold increase in the experimental animals. The predominant fatty acid released was linoleic acid (18:2) followed by arachidonic acid (20:4). Lipid peroxidation in the basal ganglia measured by the thiobarbituric acid (TBA) reaction in the presence or absence of ascorbic acid also showed a significant increase in the experimental animals at all periods with a maximum at 30 min to 2 hr after occlusion. In order to assess whether lipid peroxidation causes damage to the lysosomes and release of the enzymes, a lysosome enriched P2 fraction from the normal monkey basal ganglia was prepared and the effect of peroxidation studied. Maximum peroxidation in the P2 fraction was observed in the presence of arachidonic acid, ascorbic acid and Fe2+. There was a good correlation between the extent of lipid peroxidation and the in vitro release of lysosomal hexosaminidase from the P2 fraction. Anti-oxidants which strongly inhibited lipid peroxidation in the P2 fraction prevented the release of hexosaminidase. The results suggested that in ischemia produced by MCA occlusion lipid peroxidation which damages the lysosomal membrane causes the release of lysosomal hydrolytic enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BHA:

butylated hydroxyanisole

BHT:

butylated hydroxytoluene

FFA:

free fatty acids

MCA:

middle cerebral artery

MDA:

malonaldehyde

PUFA:

polyunsaturated fatty acids

TBA:

thiobarbituric acid

References

  1. Siesjo, B. K. 1981. Cell damage in the brain: A speculative synthesis. J. Cereb. Blood Flow Metabol.. 1:155–185.

    Google Scholar 

  2. Wei, E. P., Lamb, R. G., and Kontos, H. A. 1982. Increased phospholipase C activity after experimental brain injury. J. Neurosurg. 56:695–698.

    Google Scholar 

  3. Edgar, A. D., Strosznajder, J., and Horrocks, L. A. 1982. Activation of ethanolamine phospholipase A2 in brain during ischemia. J. Neurochem. 39:1111–1116.

    Google Scholar 

  4. Sun, G. Y., and Foudin, L. L. 1984. On the status of lysolecithin in rat cortex during ischemia. J. Neurochem. 43:1081–1086.

    Google Scholar 

  5. Flamm, E. S., Demopoulos, H. B., Seligman, M. L., Poser, R. G., and Ransohoff, J. 1978. Free radicals in cerebral ischemia. Stroke 9:445–447.

    Google Scholar 

  6. Demopoulos, H. B., Flamm, E. S., Pietronigro, D. D., and Seligman, M. L. 1980. The free radical pathology and the microcirculation in the major central nervous system disorders. Acta Physiol. Scand. (suppl.) 492:91–119.

    Google Scholar 

  7. Bazan N. G. 1970. Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim. Biophys. Acta 218:1–10.

    Google Scholar 

  8. Bazan, N. G. 1976. Free arachidonic acid and other lipids in the nervous system during early ischemia and after electroshock. Adv. Exp. Med. Biol. 72:317–335.

    Google Scholar 

  9. Kuwashima, J., Fujitani, B., Nakamura, K., Kadokawa, T., Yoshida, K., and Shimizu, M. 1976. Biochemical changes in unilateral brain injury in the rat: A possible role of free fatty acid accumulation. Brain Res. 110:547–557.

    Google Scholar 

  10. Rehncrona, S., Smith, D. S., Akesson, B., Westerberg, E., and Siesjo, B. K. 1980. Peroxidative changes in brain cortical fatty acids and phospholipids, as characterised during Fe2+-and ascorbic acid-stimulated lipid peroxidation in vitro. J. Neurochem. 34:1630–1638.

    Google Scholar 

  11. Yoshida, S., Inoh, S., Asano, T., Sano, K., Kubota, M., Shimazaki, H., and Ueta, N. 1980. Effect of transient ischemia on free fatty acids and phospholipids in the gerbil brain: Lipid peroxidation as a possible cause of post ischemic injury. J. Neurosurg. 53:323–331.

    Google Scholar 

  12. Halliwell, B., and Gutteridge, J. M. C. 1985. Lipid peroxidation: A radical chain reaction. Pages 139–161, in: Free radicals in Biology and Medicine, Clarendon Press, Oxford.

    Google Scholar 

  13. Christophersen, B. O. 1968. the inhibitory effect of reduced glutathione on the lipid peroxidation of the microsomal fraction and mitochondria. Biochem. J. 106:515–522.

    Google Scholar 

  14. Wills, E. D. 1969. Lipid peroxide formation in microsomes: General considerations. Biochem. J. 113:315–324.

    Google Scholar 

  15. Ottolenghi, A. 1959. Interaction of ascorbic acid and mitochondrial lipides. Arch. Biochem. Biophys. 79:355–363.

    Google Scholar 

  16. Hunter, F. E., Scott, A., Hoffstein, P. E., Gebicki, J. M., Weinstein, J., and Schneider, A. 1964. Studies on the mechanism of swelling, lysis and disintegration of isolated rat liver mitochondria exposed to mixtures of oxidized and reduced glutathione. J. Biol. Chem. 239:614–621.

    Google Scholar 

  17. Pasquali-Ronchetti, I., Bini, A., Botti, B., de Alojsio, G., Fornieri, C., and Vannini, V. 1980. Ultrastructural and biochemical changes induced by progressive lipid peroxidation on isolated microsomes and rat liver endoplasmic reticulum. Lab. Invest. 42:457–468.

    Google Scholar 

  18. Allison, A. C., and Young, M. R. 1969. Vital staining and fluorescence microscopy of lysosomes, Pages 624–626,in Dingle, J. T., and Fell, H. B. (eds.), Lysosomes in Biology and Pathology Vol 2, North-Holland Publishing Co., Amsterdam-London.

    Google Scholar 

  19. Mak, I. T., Misra, H. P., and Weglicki, W. B. 1983. Temporal relationship of free radical-induced lipid peroxidation and loss of latent enzyme activity in highly enriched hepatic lysosomes. J. Biol. Chem. 258:13733–13737.

    Google Scholar 

  20. Theodore, D., and Abraham, J. 1980. A sequential study of capillaries in the infarcted area of primate brain. Indian J. Med. Res. 71:821–828.

    Google Scholar 

  21. Bishayee, S., and Balasubramanian, A. S. 1971. Lipid peroxide formation in rat brain. J. Neurochem. 18:909–920.

    Google Scholar 

  22. Waravdekar, V. S., and Saslaw, L. D. 1957. A method for estimation of 2-deoxy ribose. Biochim. Biophys. Acta 24:439.

    Google Scholar 

  23. Folch, J., Lees, M., and Stanley G. H. S. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226:497–509.

    Google Scholar 

  24. Vinson, J. A., and Hooyman, J. E. 1977. Sensitive fluorogenic visualization reagent for the detection of lipids on thin layer chromatograms. J. Chromatogr. 135:226–228.

    Google Scholar 

  25. Eichberg, J., Whittaker, V. P., and Dawson, R. M. C. 1964. Distribution of lipids in subcellular particles of guinea pig brain. Biochem. J. 92:91–100.

    Google Scholar 

  26. Alam, T., and Balasubramanian, A. S. 1978. The purification, properties and characterization of three forms of α-l-fucosidase from monkey brain. Biochim. Biophys. Acta 524:373–384.

    Google Scholar 

  27. Mathur, R., and Balasubramanian, A. S. 1981. Separation, purification, comparative properties and subcellular localization of acid and neutral α-d-mannosidase of monkey brain. Indian J. Biochem. Biophys. 18:334–341.

    Google Scholar 

  28. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  29. Ljunggren, B., Schutz, M., and Siesjo, B. K. 1974a. Changes in energy state and acid-base parameters of the rat brain during complete compression ischemia. Brain Res. 73:277–289.

    Google Scholar 

  30. Ljunggren, B., Norberg, K., and Siesjo, B. K. 1974b. Influence of tissue acidosis upon restitution of brain energy metabolism following total ischemia. Brain Res. 77:173–186.

    Google Scholar 

  31. Shiu, G. K., Nemmer, J. P., and Nemoto, E. M. 1983. Reassessment of brain free fatty acid liberation during global ischemia and its attenuation by barbiturate anesthesia. J. Neurochem. 40:880–884.

    Google Scholar 

  32. Yoshida, S., Harik, S. I., Busto, R., Santiso, M. Martinez, E., and Ginsberg, M. D. 1984. Free fatty acids and energy metabolites in ischemic cerebral cortex with noradrenaline depletion. J. Neurochem. 42:711–717.

    Google Scholar 

  33. Fein, J. M., and Boulos, R. 1973. Local cerebral blood flow in experimental middle cerebral artery vasospasm. J. Neurosurg. 39:337–347.

    Google Scholar 

  34. Ott, E. O., Abraham, J., Meyer, J. S., Tulleken, C. A. F., Mathew, N. T., Achari, A. N., Aoyagi, M., and Dodson, R. F. 1975. Regional cerebral blood flow measured by the gamma camera after direct injection of133Xe into the distal stump of the occluded middle cerebral artery. Stroke 6:376–381.

    Google Scholar 

  35. Yoshida, S., Abe, K., Busto, R., Watson, B. D., Kogure, K., and Ginsberg, M. D. 1982. Influence of transient ischemia on lipid-soluble antioxidants, free fatty acids and energy metabolites in rat brain. Brain Res. 245:307–316.

    Google Scholar 

  36. Abe, K., Yoshida, S., Watson, B. D., Busto, R., Kogure, K., and Ginsberg, M. D. 1983. α-Tocopherol and ubiquinones in rat brain subjected to decapitation ischemia. Brain Res. 273:166–169.

    Google Scholar 

  37. Desai, I. D., Sawant, P. L., and Tappel, A. L. 1964. Peroxidative and radiation damage to isolated lysosomes. Biochim. Biophys. Acta 86:277–285.

    Google Scholar 

  38. Tappel, A. L. 1975. Lipid peroxidation and fluorescent molecular damage to membranes. Pages 145,in Trump, B. F., and Arstila, A. (eds.), Pathology of Cell embranes, Vol. 1, chapter 3, Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagarajan, S., Theodore, D.R., Abraham, J. et al. Free fatty acids, lipid peroxidation, and lysosomal enzymes in experimental focal cerebral ischemia in primates: Loss of lysosomal latency by lipid peroxidation. Neurochem Res 13, 193–201 (1988). https://doi.org/10.1007/BF00971532

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00971532

Key Words

Navigation