Skip to main content
Log in

Non-NMDA excitatory amino acid receptors in a subcellular fraction enriched in cerebellar glomeruli

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In the internal granular layer of the cerebellar cortex the polysynaptic complexes called glomeruli consist mainly of homogeneous populations of glutamatergic and GABAergic synapses, both located on granule cell dendrites. A subcellular fraction enriched in glomeruli was prepared from rat cerebellum, and the distribution of the different types of NMDA and non-NMDA glutamate binding sites was studied in the membranes derived from this fraction (fraction G) as compared to that in the membranes prepared from a total cerebellar homogenate (fraction T). Cl/Ca2+ independent [3H]glutamate binding sites were not abundant and could be reliably measured only in fraction G. Cl dependent/Ca2+ activated [3H]glutamate binding sites were more abundant and exhibited a single K d in both fractions G and T. Quisqualate, NMDA, kainate, L-AP4 andtrans-ACPD inhibited [3H]glutamate binding to different extents in the two membrane fractions. Quisqualate sensitive sites were predominant in all cases but more abundant in fraction T than in fraction G. An opposite distribution was observed for the NMDA sensitive binding sites while kainate sensitive binding sites were scarce everywhere.Trans-ACPD, a ligand presumed selective for metabotropic glutamate binding sites, displaced [3H]glutamate from fraction T but nor from fraction G, suggesting the absence of these sites from glomeruli. Similarly, no L-AP4 sensitive sites were present in fraction G while they were abundant in fraction T. Binding sites associated with ionotropic receptors of the quisqualate type were determined by measuring [3H]AMPA binding. The density of the high affinity [3H]AMPA binding sites in fraction T was twice as high as in fraction G, indicating that these sites are abundant in structures other than glomeruli. High-affinity [3H]kainate binding sites are more abundant in fraction G than in fraction T; the same, but with smaller differences, occurs for the distribution of the low affinity [3H]kainate binding sites. The density of the latter sites is close to that of the high affinity [3H]AMPA binding sites confirming the presence of quisqualate/kainate receptors on granule cells, as previously hypothesized (for review, see Gallo et al., 1990). Taken together, these results indicate a segregation of the glutamate binding sites types at specialized synapses or neuronal cell types in the cerebellar network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMPA:

(RS)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid

DL-AP4:

dl-2-amino-4-phosphonobutyric acid

D-AP5:

d-2-amino-5-phosphonovaleric acid

EAA:

excitatory amino acid

EGTA:

ethylene glycol-bis(β-aminoethyle ether) N,N,N′,N′-tetracetic acid

NMDA:

N-methyl-D-aspartate

Quisqualate:

β-[3,5-dioxo-1,2,4-oxadiazolidin-2-yl]-L-alanine

trans-ACPD:

trans-1-amino-cyclopentyl-1,3-dicarboxylic acid

References

  1. Young, A. B., and Fagg, G. E. 1990. Excitatory amino acid receptors in the brain: membrane binding and receptor autoradiographic approaches. Trends Pharmacol. Sci. 11:126–133.

    PubMed  Google Scholar 

  2. Watkins, J. C., Krogsgaard-Larsen, P., and Honore, T. 1990. Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. Trends Pharmacol. Sci. 11:25–33.

    PubMed  Google Scholar 

  3. Recasens, M., Guiramand, J., Nourigat, A., Sassetti, I., and Devilliers, G. 1988. A new quisqualate receptor subtype (sAA2) responsible for the glutamate-induced inositol phosphate formation in rat brain synaptoneurosomes. Neurochem. Int. 13:463–467.

    Google Scholar 

  4. Cha, J.-H. J., Makoweic, R. L., Penney, J. B., and Young, A. B. 1990. L-[3H]glutamate labels the metabotropic excitatory amino acid receptor in rodent brain. Neurosci. Lett. 113:78–83.

    PubMed  Google Scholar 

  5. Nielsen, E. O., Drejer, J., Cha, J-H., Young, A. B., and Honore, T. 1990. Autoradiographic characterization and localization of quisqualate binding sites in rat brain using the antagonist [3H]6-cyano-7-nitroquinoxaline-2,3-dione: comparison with (R,S)-[3H]alpha-3-hydroxy-5-methyl-4-isoxazolepropionic acid binding sites. J. Neurochem. 54:686–695.

    PubMed  Google Scholar 

  6. Foster, A. C., and Fagg, G. E. 1984. Acidic amino acid binding sites in mammalian neuronal membranes: their characteristics and relationship to synaptic receptors. Brain Res. Rev. 7:103–164.

    Google Scholar 

  7. Palay, J. L., and Chan-Palay, V. 1974. Cerebellar cortex: cytology and organization. Springer-Verlag, Berlin, Heidelberg and New York.

    Google Scholar 

  8. Crepel, F., Dupont, J. L., and Gardette, R. 1983. Voltage clamp analysis of the effect of excitatory amino acids and derivatives on Purkinje cell dendrites in rat cerebellar slices maintained in vitro. Brain Res. 279:311–315.

    PubMed  Google Scholar 

  9. Wiklund, T., Toggenburger, G., and Cuenod, M. 1982. Aspartate: possible neurotransmitter in cerebellar climbing fibers. Science. 216:78–80.

    PubMed  Google Scholar 

  10. Saito, K., Barber, R., Wu, J. Y., Matsuda, T., Roberts, E., and Vaughn, J. E. 1974. Immunohistochemical localization of glutamic acid decarboxylase in rat cerebellum. Proc. Nat. Acad. Sci. USA. 71:269–273.

    PubMed  Google Scholar 

  11. Somogyi, P., Hodgson, A. J., Chubb, I. W., Penke, B., and Erdei, A. 1985. Antisera to GABA. II. Immunocytochemical application to the central nervous system. J. Histochem. Cytochem. 33:240–248.

    PubMed  Google Scholar 

  12. Triller, A., Cluzeaud, F., and Korn, H. 1987. Gamma-aminobutyric acid-containing terminals can be apposed to glycine receptors at central synapses. J. Cell Biol. 104:947–956.

    PubMed  Google Scholar 

  13. Eccles, J. C., Ito, M., and Szentagothai, I. 1967. The cerebellum as a neuronal machine. Springer Verlag. Berlin Heidelberg New York.

    Google Scholar 

  14. Hamori, J., and Szentagothai, J. 1980. Participation of Golgi neuron processes in the cerebellar glomeruli: an electron microscopic study. Exp. Brain Res. 2:35–48.

    Google Scholar 

  15. Held, H. 1897. Beiträge zur Struktur der Nervenzellen und ihrer Fortsätze III. Arch. Anat. Physiol., Anat. Abt., Suppl. 273–312.

  16. Steiner, H. X., McBean, G. J., Köhler, C., Roberts, P. J., and Schwarcz, R. 1984. Ibotenate-induced neuronal degeneration in immature rat brain. Brain Res. 307:117–124.

    PubMed  Google Scholar 

  17. Garthwaite, G., and Garthwaite, J. 1984. Differential sensitivity of rat cerebellar cells in vitro to the neurotoxic effects of excitatory amino acid analogues. Neurosci. Lett. 48:361–367.

    PubMed  Google Scholar 

  18. Garthwaite, G., and Garthwaite, J. 1986. Neurotoxicity of excitatory amino acid receptor agonists in rat cerebellar slices: dependence on calcium concentration. Neurosci. Lett. 66:193–198.

    PubMed  Google Scholar 

  19. Viennot, F., Artaud, J.-C., Tholey, G., de Barry, J., and Gombos, G. 1990. A new method for the preparation of rat cerebellar glomeruli. J. Neurosci. Neth. Vol. 38, No. 2–3 to appear in June.

  20. Tapia, R., Hajos, F. Wilkin, G., Johnson, A. L., and Balazs, R. 1974. Subcellular fractionation of rat cerebellum: an electron microscopic and biochemical investigation. II. Resolution of morphologically characterised fractions. Brain Res. 70:285–299.

    PubMed  Google Scholar 

  21. Hajos, F., Tapia, R., Wilkin, G., Johnson, A. L., and Balazs, R. 1974. Subcellular fractionation of rat cerebellum: an electron mocroscopic and biochemical investigation. I. Preservation of large fragments of the cerebellar glomeruli. Brain Res. 70:261–279.

    PubMed  Google Scholar 

  22. Hajos, F., Wilkin, G., Wilson, J., and Balazs, R. 1975. A rapid procedure for obtaining a preparation of large fragments of the cerebellar glomeruli in high purity. J. Neurochem. 24:1277–1278.

    PubMed  Google Scholar 

  23. Balazs, R., Hajos, F., Johnson, A. L., Reynierse, G. L. A., Tapia, R., and Wilkin, G. P. 1975. Subcellular fractionation of rat cerebellum: an electron microscopic and biochemical investigation. III. Isolation of large fragments of the cerebellar glomeruli. Brain Res 86:17–30.

    PubMed  Google Scholar 

  24. Hamberger, A., Hansson, H.-A., Sellström, A., and Yanagihara, T. 1975. Isolation of highly purified glomerular complexes from rabbit cerebellum. Experientia 31:221–223.

    PubMed  Google Scholar 

  25. Hamberger, A., Hansson, H.-A., Lazarewicz, J. W., Lundh, T., and Sellström, A. 1976. The cerebellar glomerulus: isolation and metabolic properties of a purified fraction. J Neurochem. 27:267–272.

    PubMed  Google Scholar 

  26. Terrian, D. M., Butcher, W. I., Wu, P. H., and Armstrong, D. L. 1985. Isolation of glomeruli from areas of bovine cerebellum and comparison of [3H]serotonin uptake. Brain Res. Bull. 14:469–475.

    PubMed  Google Scholar 

  27. Honore, T., Lauridsen, J., and Krogsgaard-Larsen, P. 1981. Ibotenic acid analogues as inhibitors of [3H]glutamic acid binding to cerebellar membranes. J. Neurochem. 36:1302–1304.

    PubMed  Google Scholar 

  28. Murphy, D. E., Snowhill, E. W., and Williams, M. 1987. Characterization of quisqualate recognition sites in rat brain tissue using DL-[3H]alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and a filtration assay. Neurochem. Res. 12:775–782.

    PubMed  Google Scholar 

  29. London, E. D., and Coyle, J. T. 1979. Specific binding of [3H]kainic acid to receptor sites in rat brain. Mol. Pharmacol. 15:492–505.

    PubMed  Google Scholar 

  30. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  31. Munson, P. J., and Rodbard, D. 1980. LIGAND: a versatile computerized approach for characterization of ligand-binding systems. Anal. Biochem. 107:220–239.

    PubMed  Google Scholar 

  32. Mena, E. E., Whittemore, S. R., Monaghan, D. T., and Cotman, C. W. 1984. Ionic regulation of glutamate binding sites. Life Sci. 35:2427–2434.

    PubMed  Google Scholar 

  33. Mena, E. E., Monaghan, D. T., Whittemore, S. R., and Cotman, C. W. 1985. Cations differentially affect subpopulations ofl-glutamate receptors in rat synaptic plasma membranes. Brain Res. 329:319–322.

    PubMed  Google Scholar 

  34. Pin, J. P., Bockaert, J., and Recasens, M. 1984. The Ca2+/Cl dependentl-3H-glutamate binding: a new receptor or a particular transport system. FEBS Lett. 175:31–36.

    PubMed  Google Scholar 

  35. Bridges, R. I., Hearn, T. H., Monaghan, D. T., and Cotman, C. W. 1986. A comparison of 2-amino-4 phosphorobutyric acid (AP4) receptors and [3H]AP4 binding sites in the rat brain. Brain Res. 875:204–209.

    Google Scholar 

  36. Gallo, V., Giovannini, C., and Levi, G. 1990. Modulation of non-N-methyl-D-aspartate receptors in cultured cerebellar granule cells. J. Neurochem. 54:1619–1625.

    PubMed  Google Scholar 

  37. Wroblewski, J. T., Nicoletti, F., and Costa, E. 1985. Different coupling of excitatory amino acid receptors with Ca2+ channels in primary cultures of cerebellar granule cells. Neuropharmacology. 24:919–921.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viennot, F., de Barry, J. & Gombos, G. Non-NMDA excitatory amino acid receptors in a subcellular fraction enriched in cerebellar glomeruli. Neurochem Res 16, 435–442 (1991). https://doi.org/10.1007/BF00965563

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965563

Key Words

Navigation