Skip to main content
Log in

Neurotoxicity of ammonia and fatty acids: Differential inhibition of mitochondrial dehydrogenases by ammonia and fatty acyl coenzyme a derivatives

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In several metabolic encephalopathies, hyperammonemia and organic acidemia are consistently found. Ammonia and fatty acids (FAs) are neurotoxic: previous workers have shown that ammonia and FAs can act singly, in combination, or synergistically, in inducing coma in experimental animals. However, the biochemical mechanisms underlying the neurotoxicity of ammonia and FAs have not been fully elucidated. FAs are normally converted to their corresponding CoA derivatives (CoAs) once they enter cells and it is known that these fatty acyl CoAs can alter intermediary metabolism. The present study was initiated to determine the effects of ammonia and fatty acyl CoAs on brain mitochondrial dehydrogenases. At a pathophysiological level (2 mM), ammonia is a potent inhibitor of brain mitochondrial α-ketoglutarate dehydrogenase complex (KGDHC). Only at toxicological levels (10–20 mM) does ammonia inhibit brain mitochondrial NAD+- and NADP+-linked isocitrate dehydrogenase (NAD-ICDH, NADP-ICDH), and NAD+-linked malate dehydrogenase (MDH) and liver mitochondrial NAD-ICDH. Butyryl- (BCoA), octanoyl- (OCoA), and palmitoyl (PCoA) CoA were potent inhibitors of brain mitochondrial KGDHC, with IC50 values of 11, 20, and 25 μM, respectively; moreover, the inhibitory effect of fatty acyl CoAs and ammonia were additive. At levels of 250 μM or higher, both OCoA (IC50=1.15 mM) and PCoA (IC50=470 μM) inhibit brain mitochondrial NADP-ICDH; only at higher levels (0.5–1 mM) does BCoA inhibit this enzyme (by 30–45%). Much less sensitive than KGDHC and NADP-ICDH, brain mitochondrial NAD-ICDH is only inhibited by 1 mM BCoA, OCoA, and PCoA by 22%, 35%, and 44%, respectively. Even at 1 mM, OCoA and PCoA (but not BCoA) only slightly inhibited brain mitochondrial MDH (by 23%). In the presence of toxicological levels of ammonia (20 mM) and fatty acyl CoAs (1 mM), the inhibitory effect of fatty acyl CoAs and ammonia on brain mitochondrial NAD-ICDH, NADP-ICDH, and MDH are only partially additive. These results provide some support for our hypothesis that selective inhibition of a rate-limiting and regulated enzymatic step (e.g., KGDHC) by ammonia and fatty acyl CoAs may be one of the major mechanisms underlying the neurotoxicity of ammonia and FAs. The data also suggest that the same mechanism may acocunt for the synergistic effect of ammonia and FAs in inducing coma. Since the inhibition of KGDHC by ammonia and fatty acyl CoAs occurs at pathophysiological levels, the results may assume some pathophysiological and/or pathogenetic importance in metabolic encephalopathies in which hyperammonemia and organic acidemia are persistent features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cooper, A. J. L., and Plum, F. 1987. Biochemistry and physiology of brain ammonia. Physiol. Rev. 67:440–519.

    PubMed  Google Scholar 

  2. Stumpf, D. A., Parker Jr., W. D., and Angelini, C. 1985. Carnitine deficiency, organic acidemias, and Reye's syndrome. Neurology 35:1041–1045.

    PubMed  Google Scholar 

  3. Kvamme, E. 1983. Ammonia metabolism in the CNS. Prog. Neurobiol. 20:109–132.

    PubMed  Google Scholar 

  4. Butterworth, R. F., Gigue re, J.-F., Michaud, J., Lavoie, J., and Layrargues, G. P. 1987. Ammonia: key factor in hepatic encephalopathy. Neurochem. Pathol. 6:1–12.

    Google Scholar 

  5. Duffy, T. E., and Plum, F. 1982. Hepatic encephalopathy. Pages 693–715,in Arias, I., Popper, H., Schachter, D., and Shafritz, D. A. (eds.), The Liver: Biology and Pathobiology, Raven, New York.

    Google Scholar 

  6. Schenker, S. 1989. Hepatic encephalopathy: the present and the future. Page 3–24,in Butterworth, R. F., and Layrargues, G. P. (eds.), Hepatic Encephalopathy: Pathophysiology and Treatment, Humana, Clifton, NJ.

    Google Scholar 

  7. Zieve, L. 1989. Roles of toxins and synergism in hepatic encephalopathy. Pages 141–156,in Butterworth, R. F. and Layrargues, G. P. (eds.), Hepatic Encephalopathy: Pathophysiology and Treatment, Humana, Clifton, NJ.

    Google Scholar 

  8. Zieve, L. 1985. Encephalopathy due to short- and medium-chain fatty acids. Pages 163–177,in McCandless, D. W. (ed.), Cerebral Energy Metabolism and Metabolic Encephalopathy, Plenum, New York.

    Google Scholar 

  9. Cooper, A. J. L., and Lai, J. C. K. 1987. Cerebral ammonia metabolism in normal and hyperammonemic rats. Neurochem. Pathol. 6:67–95.

    PubMed  Google Scholar 

  10. McCandless, D. W., and Schenker, S. 1981. Effect of acute ammonia intoxication on energy stores in the cerebral reticular activating system. Exp. Brain Res. 44:325–330.

    PubMed  Google Scholar 

  11. McCandless, D. W. 1985. Octanoic acid induced coma and reticular formation energy metabolism. Brain Res. 335:131–137.

    PubMed  Google Scholar 

  12. Hindfelt, B., Plum, F., and Duffy, T. E. 1977. Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts. J. Clin. Invest. 59:386–396.

    PubMed  Google Scholar 

  13. Ratna Kumari, L., Subballakshmi, G. Y. C. Y., and Murthy, C. R. K. 1986. Acute effects of ammonia on the enzymes of the citric acid cycle in rat brain. Neurochem. Int. 8:115–120.

    Google Scholar 

  14. Lai, J. C. K., Murthy, Ch. R. K., Cooper, A. J. L., Hertz, E., and Hertz, L. 1989. Differential effects of ammonia and β-methylene-DL-aspartate on metabolism of glutamate and related amino acids by astrocytes and neurons in primary culture. Neurochem. Res. 14:377–389.

    PubMed  Google Scholar 

  15. Lai, J. C. K., and Cooper, A. J. L. 1986. Brain α-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution, and effects of inhibitors. J. Neurochem. 47:1376–1386.

    PubMed  Google Scholar 

  16. Lai, J. C. K., and Cooper, A. J. L. 1988. Differential inhibition of citric acid cycle enzymes by ammonia. FASEB J. 2:A1373 (Abstract).

    Google Scholar 

  17. Norenberg, M. D. 1987. The role of astrocytes in hepatic encephalopathy. Neurochem. Pathol. 6:13–33.

    PubMed  Google Scholar 

  18. Sarna, G. S., Bradbury, M. W. B., Cremer, J. E., Lai, J. C. K., and Teal, H. M. 1979. Brain metabolism and specific transport at the blood-brain barrier after portocaval anastomosis in the rat. Brain Res. 160:69–83.

    PubMed  Google Scholar 

  19. Hawkins, R. A., Mans, A. M., and Biebuyck, J. F. 1987. Changes in brain metabolism in hepatic encephalopathy. Neurochem. Pathol. 6:35–66.

    PubMed  Google Scholar 

  20. Blei, A. T., and Traber, P. G. 1989. Brain edema in experimental fulminant hepatic failure. Pages 231–244,in Butterworth, R.F., and Layrargues, G. P. (eds.), Hepatic Encephalopathy: Pathophysiology and Treatment, Humana, Clifton, NJ.

    Google Scholar 

  21. Raabe, W. 1989. Neurophysiology of ammonia intoxication. Pages 49–77,in Butterworth, R. F., and Layrargues, G. P. (eds.), Hepatic Encephalopathy: Pathophysiology and Treatment, Humana, Clifton, NJ.

    Google Scholar 

  22. Lai, J. C. K., Rimpel-Lamhaouar, K., and Cooper, A. J. L. 1989. NH3 & acyl CoA inhibition of dehydrogenases. Trans. Am. Soc. Neurochem. 20:232 (Abstract).

    Google Scholar 

  23. Lai, J. C. K., Rimpel-Lamhaouar, K., and Cooper, A. J. L. 1989. Differential inhibition of citric acid cycle enzymes by fatty acyl coenzyme A derivatives. J. Neurochem. 52 (Suppl):S138 (Abstract).

    Google Scholar 

  24. Patel, T. B., DeBuysere, M. S., and Olson, M. S. 1983. The effect of propionate on the regulation of the pyruvate dehydrogenase complex in the rat liver. Arch. Biochem. Biophys. 220:405–414.

    PubMed  Google Scholar 

  25. Kiechle, F. L., Malinski, T., and Moore, K. H. 1990. Insulin action: implications for the clinical laboratory. Lab. Med. 21:565–573.

    Google Scholar 

  26. Seitz, H. J., Muller, M. J., Krone, W., and Tarnowski, W. 1977. Rapid conversion by insulin of hepatic intermediary metabolism from glucose production to glucose utilization in the livers of alloxan-diabetic rats. Diabetes. 26:1159–1174.

    PubMed  Google Scholar 

  27. McKhann, G. M., and Tower, D. B. 1961. Ammonia toxicity and cerebral oxidative metabolism. Am. J. Physiol. 200:420–424.

    PubMed  Google Scholar 

  28. Katunuma, N., Okada, M., and Nishii, Y. 1966. Regulation of the urea cycle and TCA cycle by ammonia. Pages 317–335,in Weber, G. (ed.), Advances in Enzyme Regulation, Vol. 4, Pergamon, Oxford.

    Google Scholar 

  29. Lai, J. C. K., and Clark, J. B. 1979 Preparation of synaptic and non-synaptic mitochondria from mammalian brain. Pages 51–60,in Fleischer, S., and Packer, L. (eds.), Methods in Enzymology, Vol. 55, Part F, Academic, New York.

    Google Scholar 

  30. Lai, J. C. K., and Clark, J. B. 1989. Isolation and characterization of synaptic and non-synaptic mitochondria from mammalian brain. Pages 43–98,in Boulton, A. A., Baker, G. B., and Butterworth, R. F. (eds.), NeuroMethods, Vol. 11, Humana, Clifton, NJ.

    Google Scholar 

  31. Lai, J. C. K., and Barrow, H. N. 1984. Comparison of the inhibitory effects of mercuric chloride on cytosolic and mitochondrial hexokinase activities in rat brain, kidney and spleen. Comp. Biochem. Physiol. 78C:81–87.

    Google Scholar 

  32. Lai, J. C. K., and Clark, J. B. 1976. Preparation and properties of mitochondria derived from synaptosomes. Biochem. J. 154:423–432.

    PubMed  Google Scholar 

  33. Lai, J. C. K., Walsh, J. M., Dennis, S. C., and Clark, J. B. 1977. Synaptic and non-synaptic mitochondria from rat brain: isolation and characterization. J. Neurochem. 28:625–631.

    PubMed  Google Scholar 

  34. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. 1951. Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  35. Dennis, S. C., Land, J. M., and Clark, J. B. 1976. Glutamate metabolism and transport in rat brain mitochondria. Biochem. J. 156:323–331.

    PubMed  Google Scholar 

  36. Dennis, S. C., Lai, J. C. K., and Clark, J. B. 1977. Comparative studies on glutamate metabolism in synaptic and non-synaptic rat brain mitochondria. Biochem. J. 164:727–736.

    PubMed  Google Scholar 

  37. Hertz, L., Murthy, Ch. R. K., Lai, J. C. K., Fitzpatrick, S. M., and Cooper, A. J. L. 1987. Some metabolic effects of ammonia on astrocytes and neurons in primary cultures. Neurochem. Pathol. 6:97–129.

    PubMed  Google Scholar 

  38. Clark, J. B., and Lai, J. C. K. 1989. Glycolytic, tricarboxylic acid cycle, and related enzymes in brain. Pages 233–281,in Boulton, A. A., Baker, G. B., and Butterworth, R. F. (eds.), NeuroMethods, Vol. 11, Humana, Clifton, NJ.

    Google Scholar 

  39. Lai, J. C. K., and Clark, J. B. 1978. Isocitric dehydrogenase and malate dehydrogenase in synaptic and non-synaptic rat brain mitochondria: a comparison of their kinetic constants. Biochem. Soc. Trans. 6:993–995.

    PubMed  Google Scholar 

  40. Samson Jr., F. E., Dahl, N., and Dahl, D. R. 1956. A study of the narcotic action of the short chain fatty acids. J. Clin. Invest. 35:1291–1298.

    PubMed  Google Scholar 

  41. White, R. P., and Samson Jr., F. E. 1956. Effects of fatty acid anions on the electroencephalogram of unanesthetized rabbits. Am. J. Physiol. 186:271–274.

    PubMed  Google Scholar 

  42. Rabinowitz, J. L., Staeffen, J., Aumonier, P., Blauquet, P., Vincent, J. D., Daviaud, R., Ballan, P., Ferrer, J., Terme, R., Series, C., and Myerson, R. M. 1978. The effects of intravenous sodium octanoate on the rhesus monkey. Am. J. Gastroenterol. 69:187–190.

    PubMed  Google Scholar 

  43. Dahl, D. R. 1968. Short chain fatty acid inhibition of rat brain Na−K adenosine triphosphatase. J. Neurochem. 15:815–820.

    Google Scholar 

  44. Hird, F. J. R., and Weidemann, M. J. 1966. Oxidative phosphorylation accompanying oxidation of short-chain fatty acids by rat-liver mitochondria. Biochem. J. 98:378–388.

    PubMed  Google Scholar 

  45. Perlman, B. J., and Goldstein, D. B. 1984. Membrane-disordering potency and anticonvulsant actions of valproic acid and other short-chain fatty acids. Mol. Pharmacol. 26:83–89.

    PubMed  Google Scholar 

  46. Halperin, M. L., Robinson, B. H., and Fritz, I. B. 1972. Effects of palmitoyl CoA on citrate and malate transport by rat liver mitochondria. Proc. Natl. Acad. U.S.A. 69:1003–1007.

    Google Scholar 

  47. Morel, F., Lauquin, G., Lunardi, J., Duszynski, J., and Vignais, P. V. 1974. An appraisal of the functional significance of the inhibitory effect of long chain acyl-CoAs on mitochondrial transports. FEBS Letts 39:133–138.

    Google Scholar 

  48. Fahien, L. A., MacDonald, M. J., Teller, J. K., Fibich, B., and Fahien, C. M. 1989. Kinetic advantages of hetero-enzyme complexes with glutamate dehydrogenase and the α-ketoglutarate dehydrogenase complex. J. Biol. Chem. 264:12303–12312.

    PubMed  Google Scholar 

  49. Kawaguchi, A., and Bloch, K. 1976. Inhibition of glutamate dehydrogenase and malate dehydrogenase by palmitoyl coenzyme A. J. Biol. Chem. 251: 1406–1412.

    PubMed  Google Scholar 

  50. Hansford, R. G. 1980. Control of mitochondrial substrate oxidation. Pages 217–278,in Sanadi, D. R. (ed.), Current Topics in Bioenergetics, Vol. 10, Academic, New York.

    Google Scholar 

  51. Gregersen, N. 1979. Studies on the effects of saturated and unsaturated short-chain monocarboxylic acids on the energy metabolism of rat liver mitochondria. Pediat. Res. 13:1227–1230.

    PubMed  Google Scholar 

  52. Cooper, A. J. L., McDonald, J. M., Gelbard, A. S., Gledhill, R. F., and Duffy, T. E. 1979. The metabolic fate of13N-labeled ammonia in rat brain. J. Biol. Chem. 254:4982–4992.

    PubMed  Google Scholar 

  53. Ehrlich, M., Plum, F., and Duffy, T. E. 1980. Blood and brain ammonia concentrations after portacaval anastomosis. Effects of acute ammonia loading. J. Nuerochem. 34:1538–1542.

    Google Scholar 

  54. Ogier, H., Charpentier, C., and Saudubray, J.-M. 1990. Organic acidemias. Pages 271–299,in Fernandes, J., Saudubray, J.-M., and Tada, K. (eds.), Inborn Metabolic Diseases. Diagnosis and Treatment, Springer-Verlag, Berlin.

    Google Scholar 

  55. Stanley, C. A. 1990. Disorders of fatty acid oxidation. Pages 395–410,in Fernandes, J., Saudubray, J.-M., and Tada, K. (eds.), Inborn Metabolic Diseases. Diagnosis and Treatment, Springer-Verlag, Berlin.

    Google Scholar 

  56. Mamunes, P., DeVries, G. H., Miller, C. D., and David, R. B. 1975. Fatty acid quantitation in Reye's syndrome. Pages 245–254,in Pollack, J. D. (ed.), Reye's Syndrome, Grune & Stratton, New York.

    Google Scholar 

  57. Lai, J. C. K., Silk, D. B. A., and Williams, R. 1977. Plasma short-chain fatty acids in fulminant hepatic failure. Clin. Chim. Acta 78:305–310.

    PubMed  Google Scholar 

  58. Corkey, B. E., Hale, D. E., Glennon, M. C., Kelley, R. I., Coates, P. M., Kilpatrick, L., and Stanley, C. A. 1988. Relationship between unusual hepatic acyl coenzyme A profiles and the pathogenesis of Reye syndrome. J. Clin. Invest. 82:782–788.

    PubMed  Google Scholar 

  59. Fitzpatrick, S. M., Hetherington, H. P., Behar, K. L., and Shulman, R. G. 1989. Effects of acute hyperammonemia on cerebral amino acid metabolism and pH in vivo, measured by1H and31P nuclear magnetic resonance. J. Neurochem. 52:741–749.

    PubMed  Google Scholar 

  60. Friolet, L., Colombo, J. P., Lazeyras, F., Aue, W. P., Kretschmer, R., Zimmerman, A., and Bachman, C. 1989. In vivo31P NMR spectroscopy of energy rich phosphates in the brain of the hyperammonemic rat. Biochem. Biophys. Res. Commun. 159:815–820.

    PubMed  Google Scholar 

  61. Bates, T. E., Williams, S. R., Kauppinen, R. A., and Gadian, D. G. 1989. Observation of cerebral metabolites in an animal model of acute liver failure in vivo: a1H and31P nuclear magnetic resonance study. J. Neurochem. 53:102–110.

    PubMed  Google Scholar 

  62. Hindfelt, B. 1983. Ammonia intoxication and brain energy metabolism. Page 474–484,in Kleinberger, G., and Deutsch, E. (eds.), New Aspects of Clinical Nutrition, Karger, Basel.

    Google Scholar 

  63. Walker, C. O., McCandless, D. W., McGarry, J. D., and Schenker, S. 1970. Cerebral energy metabolism in short-chain fatty acid-induced coma. J. Lab. Clin. Med. 76:569–583.

    PubMed  Google Scholar 

  64. Derr, R. F., and Zieve, L. 1973. Decreased cerebral uptake of oxygen in coma — a consequence of decreased utilization of ATP. J. Neurochem. 21:1555–1557.

    PubMed  Google Scholar 

  65. Drewes, L. R., and Leino, R. L. 1985. Neuron-specific mitochondrial degeneration induced by hyperammonemia and octanoic acidemia. Brain Res 340:211–218.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We dedicate this paper to Dr. Santiago Grisolia. Dr. Grisolia has carried out many pioneering studies in urea metabolism and ammonia toxicity. His interesting ideas have been influential in these and related fields of research. He continues to contribute significantly in unravelling the mechanisms of ammonia toxicity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, J.C.K., Cooper, A.J.L. Neurotoxicity of ammonia and fatty acids: Differential inhibition of mitochondrial dehydrogenases by ammonia and fatty acyl coenzyme a derivatives. Neurochem Res 16, 795–803 (1991). https://doi.org/10.1007/BF00965689

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965689

Key Words

Navigation