Skip to main content
Log in

Neurochemical and histological analysis of motor dysfunction observed in rats with methylnitrosourea-induced experimental cerebellar hypoplasia

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Histological and neurochemical changes related to motor dysfunction observed in rats after neonatal treatment with nitrosoureas were examined. Neonatal rats received subcutaneous injections of methylnitrosourea (MNU: 0.125 mmol/kg, s.c.) or ethylnitrosourea (ENU: 0.25 mmol/kg, s.c.) daily at 4,5,6 and 7 days post partum, a period of cerebellar granule cell, stellate cell and basket cell formation. At 14 days and 45 days after birth, MNU-treated rats displayed a lowering in motor coordination skills measured by tests of retainment ability on a rod of 26 mm diameter, chinningclimbing ability on parallel rods or retainment ability on a rotating rod. Histological examination at 14 days after birth showed a cerebellar hypoplasia with reduced cellularity of the internal granule cell layer and a disperse disposition of Purkinje cells in the granule cell layer. Cerebellar growth and cerebellar content and concentration of DNA were remarkably reduced in the MNU-treated rat. The degree of the reduction in cerebellar content of glutamic acid paralleled the degree of the cerebellar hypoplasia at 14 and 45 days after birth. In contrast, the concentrations of gamma-aminobutyric acid, acetylcholine, 5-hydroxytryptamine and norepinephrine were significantly increased by MNU treatment. ENU treatment control did not exert any significant changes in the neurotransmitters and motor coordination. These results suggest that the motor dysfunctions observed in MNU treated rats are induced by unbalanced output activities from Purkinje cells to motor neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bosch, D. A., Gerrits, P. O., and Ebels, E. J. 1972. The cytotoxic effect of ethylnitrosourea and methylnitrosourea on the nervous system of the rat at different stages of development. Z. Krebsforsch 77:308–318.

    Google Scholar 

  2. Druckery, H., Ivankovic, S., and Preussman, R. 1965. Selektive Erzeugung maligner Tumoen im Gehirn und Ruckenmark von Ratten durch N-Methyl-N-nitrosoharnstoff. Z. Krebsforsch. 66:389–408.

    PubMed  Google Scholar 

  3. Bosch, D. A. 1977. Short and long term effects of methyl- and ethylnitrosourea (MNU&ENU) on the developing nervous system of the rat. Acta Neurol. Scand. 55:106–122.

    PubMed  Google Scholar 

  4. Fujimori, K., Sunouchi, M., Inoue, K., Nakadate, A., Takanaka, A., and Omori, Y. 1983. Cytotoxic effects of methylnitrosourea on developing brain. Neurochem. Res. 8:193–206.

    PubMed  Google Scholar 

  5. Eccles, J. C., Ito, M., and Szenttagothai, J. 1967. The cerebellum as a neuronal machine. Springer-Verlag, Berlin, Heiderberg, New York.

    Google Scholar 

  6. Itoh, M. 1984. The cerebellum and neural control. Raven Press, New York.

    Google Scholar 

  7. Thomas, W. E. 1986. Studies of neurotransmitter chemistry of central nervous system neurons in primary tissue culture. Life Sci. 38:297–308.

    PubMed  Google Scholar 

  8. Bloom, F. E., Hoffer, B. J., and Siggins, G. R. 1971. Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. 1. Localization of the fibers and synapses. Brain Res. 25:501–521.

    PubMed  Google Scholar 

  9. Frederickson, R. C. A., Neuss, M., Morzorati, S. L., and McBride, W. J. 1978. A comparison of the inhibitory effects of taurine and GABA on identified Purkinje cells and other neurons in the cerebellar cortex of the rat. Brain Res. 145:117–126.

    PubMed  Google Scholar 

  10. Kimura, H., Okamoto, K., and Sakai, Y. 1985. Pharmacological evidence for L-aspartate as the neurotransmitter of cerebellar climbing fibers in the Guinea-pig. J. Physiol. 365:103–119.

    PubMed  Google Scholar 

  11. McCance, L., and Phillis, J. W. 1968. Cholinergic mechanisms in the cerebellar cortex. Int. J. Neurochem. 7:447–462.

    Google Scholar 

  12. Obata, K., Ito, M., Ochi, R., and Sato, N. 1967. Pharmacological properties of the postsynaptic inhibition by Purkinje cell axons and the action of γ-aminobutyric acid on Deiter's neurons. Exp. Brain Res. 4:43–57.

    PubMed  Google Scholar 

  13. Rea, M. A., and McBride, W. J. 1978. Effects of x-irradiation on the levels of glutamate, aspartate and GABA in different regions of the cerebellum of the rat. Life Sci. 23:2355–2360.

    PubMed  Google Scholar 

  14. Shinner, S., Maciewicz, R. J., and Shofer, R. J. 1975. A raphe projection to cat cerebellar cortex. Brain Res. 97:139–143.

    PubMed  Google Scholar 

  15. Stone, T. W. 1979. Glutamate as the neurotransmitter of cerebellar granule cells in the rat: Electrophysiological evidence. Br. J. Pharmacol. 66:291–296.

    PubMed  Google Scholar 

  16. Altman, J., and Sudarshan, K. 1975. Postnatal development of locomotion in the laboratory rat. Anirn. Behav. 23:896–920.

    Google Scholar 

  17. Schmidt, G., and Thannhauser, S. J. 1945. A method for the determination of deoxyribonucleic acid, ribonucleic acid and phosphoproteins in animal tissues. J. Biol. Chem. 161:83–89.

    Google Scholar 

  18. Burton, K. 1956. A study of the colorimetric estimation of deoxyribonucleic acid. Biochem. J. 62:315–323.

    PubMed  Google Scholar 

  19. Mejbaum, W. 1939. Estimation of small amounts of pentose especially in derivatives of adenylic acid. Z. Physiol. Chem. 258:117–120.

    Google Scholar 

  20. Asano, M., Miyauchi, T., Kato, T., Fujimori, K., and Yamamoto, K. 1986. Determination of acetylcholine and choline in rat brain tissue by liquid chromatography/electrochemistry using an immobilized enzyme post column reactor. J. Liq. Chromatogr., 9:199–215.

    Google Scholar 

  21. Kinnard, W. J., and Carr, C. J. 1957. A preliminary procedure for the evaluation of central nervous system depressants. 121:354–361.

  22. Anderson, G., and Oscarsson, O. 1978. Climbing fiber microzones in cerebellar vermis and their projection to different groups of cells in the lateral vestibular nucleus. Exp. Brain Res., 32:565–579.

    PubMed  Google Scholar 

  23. Udo, M., Matsukawa, K., and Kamei, H. 1980. Cerebellar control of locomotion: Effects of cooling cerebellar intermediate cortex in high decerebrate and awake walking cats. J. Neurophysiol. 44, 119–134.

    PubMed  Google Scholar 

  24. Snider, R. S. 1950. Recent contributions to the anatomy and physiology of the cerebellum. Arch. Neurol. Psychiatry 64, 196–219.

    PubMed  Google Scholar 

  25. Ekerot, C. F. and Larson, B. 1979. The dorsal spinoolivocerebellar system in the cat. II. Somatotopical organization. Exp. Brain Res. 36:201–217.

    PubMed  Google Scholar 

  26. Altman, J., and Bayer, S. A. 1978. Prenatal development of the cerebellar system in the rat. J. Comp. Neurol. 179:23–48.

    PubMed  Google Scholar 

  27. Hackett, J. T., Hou, S. M., and Cochran, S. L. 1979. Glutamate and synaptic depolarization of Purkinje cells evoked by parallel fibers and by climbing fibers. Brain Res. 170:377–380.

    PubMed  Google Scholar 

  28. Hudson, D. B., Valcana, T., Bean, G., and Timiras, P. S. 1976. Glutamic acid: A strong candidate as the neurotransmitter of the cerebellar granule cell. Neurochem. Res. 1:73–81.

    Google Scholar 

  29. Sekiguchi, M., Okamoto, K., and Sakai, Y. 1986. Release of endogenous aspartate and glutamate induced by electrical stimulation in guinea pig cerebellar slices. Brain Res. 378:174–178.

    PubMed  Google Scholar 

  30. McBride, W. J., Aprison, M. H., and Kusano, K. 1976. Content of several amino acids in the cerebellum, brain stem and cerebrum of the stagger, weaver and nervous neurologically mutant mice. J. Neurochem. 32:867–871.

    Google Scholar 

  31. Changeux, J. P. and Mikoshiba, K. 1978. Genetic and ‘epidemic’ factors regulating synapse formation in vertebrate cerebellum and neuromuscular junction. In maturation of nervous system. Prog. Brain Res. 48:43–66.

    PubMed  Google Scholar 

  32. Chan-Palay, V. 1978. Autoradiographic localization of γ-aminobutyric acid receptors in the rat central nervous system by using [3H]muscimol. Proc. Natl. Acad. Sci. USA 75:1024–1028.

    PubMed  Google Scholar 

  33. Okamoto, K., and Sakai, Y. 1980. Localization of sensitive sites to taurine, γ-aminobutyric acid, glycine and β-alanine in the molecular layer of guinea-pig cerebellar slices. Br. J. Pharmacol. 69:407–413.

    PubMed  Google Scholar 

  34. Altman, J. 1972. Postnatal development of the cerebellar cortex in the rat. J. Comp. Neurol. 145:353–514.

    PubMed  Google Scholar 

  35. Hoffer, B. J., Siggins, G. R., Oliver, A. P. and Bloom, F. E. 1973. Activation of the pathway from Locus coeruleus to rat cerebellar Purkinje neurons: Pharmacological evidence of noradrenergic central inhibition. J. Pharmacol. Exp. Therap. 184:553–569.

    Google Scholar 

  36. Kan, K. S. K., Chad, L. P., and Forno, L. S. 1980. Immunohistochemical localization of choline acetyltransferase in the human cerebellum. Brain Res., 193:165–171.

    PubMed  Google Scholar 

  37. Takeuchi, Y., Kimura, H., and Sano, Y. 1982. Immunohistochemical demonstration of serotonin-containing nerve fibers in the cerebellum. Cell Tissue Res. 226:1–12.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujimori, K., Inoue, K., Nakazawa, K. et al. Neurochemical and histological analysis of motor dysfunction observed in rats with methylnitrosourea-induced experimental cerebellar hypoplasia. Neurochem Res 17, 223–231 (1992). https://doi.org/10.1007/BF00966663

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966663

Key words

Navigation