Skip to main content
Log in

Parkinson-like disease by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity inMacaca Fascicularis: Synaptosomal metabolism and action of dihydroergocriptine

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The maximal rates (Vmax) of some enzyme activities related to synaptosomal energy metabolism were studied in different types of synaptosomes from cerebellar cortex ofMacaca Fascicularis (Cynomolgus monkey). Different synaptosomal populations, namely “large” and “small” synaptosomes, were isolated from the anterior lobule of the cerebellar cortex of monkeys treated p.o. with dihydroergocriptine at the dose of 12 mg/kg/day before and during the induction of a Parkinson's-like syndrome by MPTP administration (i.v., 0.3 mg/kg/day for 5 days). The enzymes were chosen according to their regulatory role and as markers of the following metabolic pathways: (a) glycolysis ((hexokinase, phosphofructokinase, lactate dehydrogenase), (b) Krebs' (TCA) cycle (citrate synthase, malate dehydrogenase), (c) amino acid, glutamate metabolism (glutamate dehydrogenase, glutamate-pyruvate- and glutamate-oxaloacetate-transaminases), (d) acetylcholine catabolism (acetylcholinesterase) and (e) ATPases, i.e. Na+−K+-ATPase, Mg2+-ATP synthetase, Mg2+-ATPase, Ca2+−Mg2+-ATPase and Ca2+-ATPase Low and High affinity for Ca2+. The MPTP administration modified the activities of citrate synthase, malate dehydrogenase, Na+−K+-ATPase, acetylcholinesterase and glutamate-oxaloacetate transaminase only on selected types of synaptosomes.

Pharmacological treatment by dihydroergocriptine was able to recovery at the steady-state levels the activities of these enzymes, thus demonstrating a partial protective effect on these biochemical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Langston, J. W., Ballard, P., Tetrud, J. W., and Irwin, I. 1983. Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980.

    PubMed  Google Scholar 

  2. Langston, J. W., Forno, L. S., Rebert, C. S., and Irvin, I. 1984. MPTP causes selective damage to the zona compacta of the substantia nigra in the squirrel monkey. Brain Res. 292:390–394.

    PubMed  Google Scholar 

  3. Ramsay, R. R., and Singer, T. P. 1986. Energy-dependent uptake of N-methyl-4-phenylpyridinium, the neurotoxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, by mitochondria. J. Biol. Chem. 261:7585–7587.

    PubMed  Google Scholar 

  4. Israel M., and Whittaker, V. P. 1965. The isolation of mossy fibre endings from the granular layer of the cerebellar cortex. Experientia 21:325–326.

    PubMed  Google Scholar 

  5. Szutowicz, A., Harris, H. F., Srere, P. A., and Crawford, I. L. 1983. ATP-citrate lyase and other enzymes of acetyl-CoA metabolism in fractions of small and large synaptosomes from rat brain hippocampus and cerebellum. J. Neurochem. 41:1502–1505.

    PubMed  Google Scholar 

  6. Markstein, R. 1983. Dopamine receptor profile of co-dergocrine (Hydergine) and its components. Eur. J. Pharmacol. 86:145–155.

    Google Scholar 

  7. Benzi, G., Arrigoni, E., Pastoris, O., Dossena, M., Gorini, A., and Villa, R. F. 1983. Effects of ergot derivatives on the metabolic changes induced by acute hypoxia on the synaptosomes from dog brain. Vol. 23, pages 263–282, in Agnoli, A., Crepaldi, G., Spano, P. F. and Trabucchi, M. (eds.), Aging Brain and Ergot Alkaloids, Raven Press, New York.

    Google Scholar 

  8. Benzi, G., Villa, R. F., Dossena, M., Vercesi, L., Gorini, A., and Pastoris, O. 1984. Role of drugs in recovery of metabolic function of rat brain following severe hypoglycemia. Neurochem. Res. 9:979–992.

    PubMed  Google Scholar 

  9. Benzi, G., Pastoris, O., and Villa, R. F. 1988. Changes induced by aging and drug treatment on cerebral enzymatic antioxidant system. Neurochem. Res. 13:467–478.

    PubMed  Google Scholar 

  10. Calne, D. B., Kartzinel, R., and Shoulson, I. 1976. An ergot derivative in the treatment of Parkinson's disease. Post-grad. Med. J. 52:81–83.

    Google Scholar 

  11. Agnoli, A., Martucci, N., and Manna, V. 1987. Ergot dopaminergic agonists and Parkinson dementia. Vol. 1, pages 89–96,in Bes, A., Cahan, R. and Hoyer, S. (eds.), Senile Dementia: Early Detection: Current Problems in Senile Dementia, International Symposium on Senile Dementia: Early Detection, Paris.

  12. Benzi, G. 1983. Drug-induced changes in some cerebral enzymatic activities related to energy transduction. Vol. 4 (2nd Ed.), pages 531–542,in Lajtha, A. (ed.), Handbook of Neurochemistry, Plenum Publishing Corporation, New York.

    Google Scholar 

  13. Villa, R. F., Arnaboldi, R., Ghigini, B., and Gorini, A. 1992. Mitochondrial factors involved in Parkinson's disease by MPTP toxicity in Macaca Fascicularis and dihydroergocriptine. Neurochem. Res. 17:1147–1154.

    PubMed  Google Scholar 

  14. Szabo, J., and Cowan, W. M. 1984. A stereotaxic atlas of the brain of the Cynomolgus monkey (Macaca fascicularis). J. Comp. Neurol. 222:265–300.

    PubMed  Google Scholar 

  15. Villa, R. F., Arnaboldi, R., Ghigini, B., Quacci, D., and Gorini, A. 1991. Enzymatic and morphological characterization of synaptosomes subtypes from rat cerebellum. It. Biochem. Soc. Trans. 2:291.

    Google Scholar 

  16. Knull, H. R., Taylor, W. F., and Wells, W. W. 1973. Effects of energy metabolism on in vivo distribution of hexokinase in brain. J. Biol. Chem. 248:5414–5417.

    Google Scholar 

  17. Sugden, P. H., and Newsholme, E. A. 1975. The effects of ammonium inorganic phosphate and potassium ions on the activity of phosphofructokinases from muscle and nervous tissues of vertebrates and invertebrates. Biochem. J. 150:113–122.

    Google Scholar 

  18. Bermeyer, H. U., and Bernt, E. 1974. Lactate dehydrogenase: UV-assay with pyruvate and NADH. Vol. 2, pages 573–574,in Bergmeyer, H. U. (ed.), Methods of Enzymatic Analysis, Academic Press, New York.

    Google Scholar 

  19. Sugden, P. H., and Newsholme, E. A. 1975. Activities of citrate synthase, NAD+-linked and NADP+-linked isocitrate dehydrogenase, glutamate dehydrogenase, aspartate aminotransferase and alanine aminotransferase in nervous tissue from vertebrates and invertebrates. Biochem. J. 150:105–111.

    Google Scholar 

  20. Ochoa, S. 1955. Malic dehydrogenase from pig heart. Vol. 6, pages 735–739,in Colowick, S. P., and Kaplan, N. O. (eds.), Methods in Enzymology, Academic Press, New York and London.

    Google Scholar 

  21. Bergmeyer, H. U., and Bernt, E. 1974. Glutamate-pyruvate transaminase. Vol. 2, pages 752–767,in Bergmeyer, H. U. (ed.), Methods of Enzymatic Analysis, Academic Press, New York and London.

    Google Scholar 

  22. Lai, J. C. K., Walsh, J. M., Dennis, S. C., and Clark, J. B. 1977. Synaptic and nonsynaptic mitochondria from rat brain: Isolation and characterization. J. Neurochem. 28:625–631.

    PubMed  Google Scholar 

  23. Ellman, G. L., Courtney, K. D., Andres, V., and Featherstone, R. M. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7:88–95.

    PubMed  Google Scholar 

  24. Shallom, J. M., and Katyare, S. S. 1985. Altered synaptosomal ATPase activity in rat brain following prologed in vivo treatment with nicotine. Biochem. Pharmacol 34:3445–3449.

    PubMed  Google Scholar 

  25. Michaelis, E. K., Michaelis, M. L., Chang, M. M., and Kitos, T. E. 1983. High affinity Ca++-stilmulated Mg++-dependent ATPase in rat brain synaptosomes, synaptic membranes and microsomes. J. Biol. Chem. 258:6101–6108.

    PubMed  Google Scholar 

  26. Palayoor, S. T., Seyfried, T. N., and Barnard, D. J. 1986. Calcium ATPase activities in synaptic plasma membranes of seizureprone mice. J. Neurochem. 46:1370–1375.

    PubMed  Google Scholar 

  27. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  28. Fonnum, F., and Malthe-Sorenssen, D. 1981. Localization of glutamate neurons. Pages 205–222,in Roberts, P. J., Storm-Mathisen, J., and Johnston, G. A. R. (eds.), Glutamate: Transmitter in the Central Nervous System, John Wiley and Sons, New York.

    Google Scholar 

  29. Wilson, J. E., Wilkin, G. P., and Balazs, R. 1975. Biochemical dissection of the cerebellum, functional properties of the “Glomerulus particles”. Pages 427–436,in Berl, S., Clarke, D. D., and Schneider, D. (eds.), Metabolic Compartmentation and Neurotransmission, Plenum Press, New York.

    Google Scholar 

  30. Siesjo, B. K. 1978. Brain Energy Metabolism, Wiley and Sons, New York.

    Google Scholar 

  31. Villa, R. F., and Gorini, A. 1991. Enzyme mitochondrial systems during aging: pharmacological implications. Neuro. Chem. (Life Sci Adv.) 10:49–59.

    Google Scholar 

  32. Villa, R. F., Gorini, A., Geroldi, D., LoFaro A., and Dell'Orbo, C. 1989. Enzyme activities in perikaryal and synaptic mitochondrial fractions from rat hippocampus during development. Mech. Aging Develop. 49:211–225.

    Google Scholar 

  33. Lin, S. C., and Way, E. L. 1984. Characterization of calcium activated and magnesium activated ATPases of brain nerve endings. J. Neurochem. 42:1697–1706.

    PubMed  Google Scholar 

  34. Palombo, E., Porrino, L. J., Crane, A. M., Ho, V. W., Bankiewicz, K. S., Kopin, I. J., and Sokoloff, L. 1987. MPTP-induced hemiparkinsonism in monkeys: effects of 1-Dopa on local cerebral glucose utilization. Neurology 37:337.

    PubMed  Google Scholar 

  35. Vyas, I., Heikkila, R. E., and Nicklas, W. 1986. Studies on the neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: inhibition of NAD-linked substrate oxidation by its metabolite, 1-methyl-4-phenylpyridinium. J. Neurochem. 46:1501–1507.

    PubMed  Google Scholar 

  36. Mata, M., Fink, D. J., Gainer, H., Smith, C. B., Davidsen, L., Savaki, H., Schwartz, W. J., and Sokoloff, L. 1980. Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity. J. Neurochem. 34:213–215.

    PubMed  Google Scholar 

  37. Schwartzman, R. J., Guillermo, M. A., and Grothusen, J. R. 1987. CNS glucose metabolic changes in the stages of the MPTP primate model of Parkinson's disease. Neurology 31:338.

    Google Scholar 

  38. Scotcher, K. P., Irwin, L., DeLanney, L. E., Langston, J. W., and DiMonte, D. 1990. Effects of 1-metyl-4-phenyl-1,2,3,6-tetrahydropyridine and 1-methyl-4-phenylpyridinium ion on ATP levels of mouse brain synaptosomes. J. Neurochem. 54:1295–1301.

    PubMed  Google Scholar 

  39. Hallman, H., Lange, J., Olson, I., Stromberg, I., and Jonsson, G. 1985. Neurochemical and histochemical characterization of neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on brain catecholamine neurones in the mouse. J. Neurochem. 44:117–127.

    PubMed  Google Scholar 

  40. Bocchetta, A., Piccardi, M. P., Del Zompo, M., Pintus, S., and Corsini, G. U. 1985. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: correspondence of its binding sites to monoamine oxidase in rat brain and inhibition of dopamine oxidative deamination in vivo and in vitro. J. Neurochem. 45:673–676.

    PubMed  Google Scholar 

  41. Gorini, A., and Villa, R. F. 1983. Action of dihydroergocristine on enzyme activities related to energy transduction. Il Farmaco Ed. Pr. 38:191–199.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villa, R.F., Arnaboldi, R., Ghigini, B. et al. Parkinson-like disease by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity inMacaca Fascicularis: Synaptosomal metabolism and action of dihydroergocriptine. Neurochem Res 19, 229–236 (1994). https://doi.org/10.1007/BF00971569

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00971569

Key Words

Navigation