Skip to main content
Log in

Modifications by chronic intermittent hypoxia and drug treatment on skeletal muscle metabolism

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The energy metabolism was evaluated in gastrocnemius muscle from 3-month-old rats subjected to either mild or severe 4-week intermittent normobaric hypoxia. Furthermore, 4-week treatment with CNS-acting drugs, namely, α-adrenergic (δ-yohimbine), vasodilator (papaverine, pinacidil), or oxygen-increasing (almitrine) agents was performed. The muscular concentration of the following metabolites was evaluated: glycogen, glucose, glucose 6-phosphate, pyruvate, lactate, lactateto-pyruvate ratio; citrate, α-ketoglutarate, succinate, malate; aspartate, glutamate, alanine; ammonia; ATP, ADP, AMP, creatine phosphate. Furthermore the Vmax of the following muscular enzymes was evaluated: hexokinase, phosphofructokinase, pyruvate kinase, lactate dehydrogenase; citrate synthase, malate dehydrogenase; total NADH cytochrome c reductase; cytochrome oxidase. The adaptation to chronic intermittent normobaric mild or severe hypoxia induced alterations of the components in the anaerobic glycolytic pathway [as supported by the increased activity of lactate dehydrogenase and/or hexokinase, resulting in the decreased glycolytic substrate concentration consistent with the increased lactate production and lactate-to-pyruvate ratio] and in the mitochondrial mechanism [as supported by the decreased activity of malate dehydrogenase and/or citrate synthase resulting in the decreased concentration of some key components in the tricarboxylic acid cycle]. The effect of the concomitant pharmacological treatment suggests that the action of CNS-acting drugs could be also related to their direct influence on the muscular biochemical mechanisms linked to energy transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pastoris, O., Dossena, M., Gorini, A., Vercesi, L., and Benzi, G. 1985. Adaptation of skeletal muscle energy metabolism to repeated hypoxic-normoxic exposures and drug treatment. Arch. Int. Pharmacodyn. 274:145–158.

    Google Scholar 

  2. Pastoris, O., Vercesi, L., Allorio, F., and Dossena, M. 1988. Effect of hypoxia, aging and pharmacological treatment on muscular metabolites and enzyme activities. Il Farmaco Ed. Sc. 53:627–642.

    Google Scholar 

  3. Pastoris, O., Dossena, M., Allorio, F., and Vercesi, L. 1990. Hypoxia and pharmacological treatment in differently aged rats: effect on muscular metabolite concentrations. Mech. Aging Dev. 54: 207–219.

    Google Scholar 

  4. Karpati, G., Carpenter, S., Melmed, C., and Eisen, A. A. 1974. Experimental ischemia myopathy. J. Neurol. Sci. 23:129–161.

    Google Scholar 

  5. Aschenbrenner, V., Albin, R., Zak, R., Nair, K. G., and Rabinowitz, M. 1972. Pages 178–185,in Bajusz, E., and Rona, G. (eds.), Myocardiology, Urban & Schwarzenberg, München.

    Google Scholar 

  6. Alberghina, M., Cambria, A., Petrone, G., and Mistretta, A. 1977. In vivo incorporation of3H-glycerol and14C-palmitate into lipids of subcellular fractions of the myocardium hypertrophied during experimental hypoxia. Ital. J. Biochem. 26:331–341.

    Google Scholar 

  7. Schreiber, S. S., Oratz, M., Evans, C., and Gueyikian, F. 1970. Myosin, myoglobin, and collagen synthesis in acute cardiac overload. Amer. J. Physiol. 219:481–486.

    Google Scholar 

  8. Jefferson, L. S., Wolpert, E. B., Giger, K. E., and Morgan, H. E. 1971. Regulation of protein synthesis in heart muscle. III. Effect of anoxia on protein synthesis. J. Biol. Chem. 246:2171–2178.

    Google Scholar 

  9. Dunlop, D. S. 1978. Measuring protein synthesis and degradation rates in CNS tissue. Vol. 4, Pages 91–138,in Marks, K., Rodnight, R. (eds.), Research Methods in Neurochemistry, Plenum Press, New York.

    Google Scholar 

  10. Marzatico, F., Curti, D., Dagani, F., Taglietti, M., and Benzi, G. 1986. Brain enzyme adaptation to mild normobaric intermittent hypoxia. J. Neurosci. Res. 16:419–428.

    Google Scholar 

  11. Villa, R. F., Turpeenoja, L., Magrl, G., Gorini, A., Ragusa, N., and Giuffrida-Stella, A. M. 1991. Effect of hypoxia on protein composition of synaptic membranes from cerebral cortex during aging. Neurochem. Res. 16:827–832.

    Google Scholar 

  12. Serra, I., Alberghina, M., Viola, M., and Giuffrida, A. M. 1981. Effect of hypoxia on nucleic acids and protein synthesis in different brain regions. Neurochem. Res. 6:595–605.

    Google Scholar 

  13. Alberghina, M., and Giuffrida, A. M. 1981. Effect of hypoxia on the incorporation of [1-14C] palmitate on lipids of various brain regions. J. Neurosci. Res. 6:403–419.

    Google Scholar 

  14. Alberghina, M., Viola, M., and Giuffrida, A. M. 1982. Changes in enzyme activities of glycerolipid metabolism of guinea pig cerebral hemispheres during experimental hypoxia. J. Neurosci. Res. 7:147–154.

    Google Scholar 

  15. Wollenberger, A., Ristau, O., and Schoffe, G. 1960. Eine einfache Technik der extrem schnellen Abkuhlung grosserer Gewebestucke. Pflügers Arch. 270:399–412.

    Google Scholar 

  16. Keppler, D., and Decker, K. 1974. Glycogen. Determination with amyloglucosidase. Pages 1127–1131,in Bergmeyer, H. U. (ed.), Methods of Enzymatic Analysis, Academic Press Inc., New York and London.

    Google Scholar 

  17. Bergmeyer, H. U., Bernt, E., Schmidt, F., and Stork, H. 1974. D-glucose. Determination with hexokinase and glucose-6-phosphate dehydrogenase. Pages 1196–1201,in Bergmeyer, H. U. (ed.), Methods of Enzymatic Analysis, Academic Press Inc., New York and London.

    Google Scholar 

  18. Passonneau, J. V., and Lowry, O. H. 1974. Pyruvate. Pages 1452–1456,in Bergmeyer, H. U. (ed.), Methods of Enzymatic Analysis, Academic Press Inc., New York and London.

    Google Scholar 

  19. Lowry, O. H., and Passonneau, J. V. 1972. Lactate. Pages 194–199,in A Flexible System of Enzymatic Analysis, Academic Press Inc., New York and London.

    Google Scholar 

  20. Lowry, O. H., and Passonneau, J. V. 1972. Citrate. Pages 157–158,in A Flexible System of Enzymatic Analysis, Academic Press Inc., New York and London.

    Google Scholar 

  21. Narins, R. G., and Passonneau, J. V. 1974. 2-Oxoglutarate. Fluorimetric determination. Pages 1580–1584,in Bergmeyer, H. U. (ed.), Methods of Enzymatic Analysis, Academic Press Inc., New York and London.

    Google Scholar 

  22. Lowry, O. H., and Passonneau, J. V. 1972. Malate. Pages 201–203,in A Flexible System of Enzymatic Analysis, Academic Press Inc., New York and London.

    Google Scholar 

  23. Bergmeyer, H. U., Bernt, E., Mollering, H., and Pfleiderer, G. 1974. L-aspartate and L-asparagine. Pages 1696–1700,in Bergmeyer, H. U. (ed.), Methods of Enzymatic Analysis, Academic Press Inc., New York and London.

    Google Scholar 

  24. Witt, I. 1974. L-Glutamate. Determination with glutamate dehydrogenase and the 3-acetylpyridine analogue of NAD (APAD). Pages 1713–1715,in Bergmeyer, H. U. (ed.), Methods of Enzymatic Analysis, Academic Press Inc., New York and London.

    Google Scholar 

  25. Williamson, D. H. 1974. L-Alanine. Determination with alanine dehydrogenase. Pages 1679–1682,in Bergmeyer, H. U. (ed.), Methods of Enzymatic Analysis, Academic Press Inc., New York and London.

    Google Scholar 

  26. Kun, E., and Kearney, E. B. 1974. Ammonia. Pages 1802–1806,in Bergmeyer, H. U. (ed.), Methods of Enzymatic Analysis, Academic Press Inc., New York and London.

    Google Scholar 

  27. Lamprecht, W., Stein, P., Heinz, P., and Weisser, H. 1974. Creatine phosphate. Determination with creatine kinase, hexokinase and glucose-6-phosphate dehydrogenase. Pages 1777–1781,in Bergmeyer H. U. (ed.), Methods of Enzymatic Analysis, Academic Press Inc., New York and London.

    Google Scholar 

  28. Jaworek, D., Gruber, W., and Bergmeyer, H. U. 1974. Adenosine-5′-diphosphate and adenosine-5′-monophosphate. Pages 2127–2131,in Bergmeyer, H. U. (ed.), Methods of Enzymatic Analysis, Academic Press Inc., New York and London.

    Google Scholar 

  29. Atkinson, D. E. 1968. The energy charge of the adenylate pool as regulatory parameter. Interaction with feed-back modifiers. Biochemistry 7:4030–4034.

    Google Scholar 

  30. Lowry, Q. H., Rosebrough, N. J., Farr, A. L., and Randall, E. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  31. Easterby, J. S., and Qadri, S. S. 1982. Hexokinase type II from rat skeletal muscle. Vol. 90, pages 11–15,in Colowick, S. P., and Kaplan, N. O. (eds.), Methods in Enzymology, Academic Press Inc., New York and London.

    Google Scholar 

  32. Sugden, P. H., and Newsholme, E. A. 1975. The effects of ammonium, inorganic phosphate and potassium ions on the activity of phosphofructokinases from muscle and tissues of vertebrates and invertebrates. Biochem. J. 150:113–122.

    Google Scholar 

  33. Bergmeyer, H. U., and Bernt, E. 1974. Pyruvate kinase. Pages 509–510,in Bergmeyer, H. U. (ed.), Methods of Enzymatic Analysis, Academic Press Inc., New York and London.

    Google Scholar 

  34. Bergmeyer, H. U., and Bernt, E. 1974. Lactate dehydrogenase. UV-assay with pyruvate and NADH. Pages 574–579,in Bergmeyer, H. U. (ed.), Methods of Enzymatic Analysis, Academic Press Inc., New York and London.

    Google Scholar 

  35. Srere, P. A. 1969. Citrate synthase. Pages 3–11,in Colowick, S. P., and Kaplan, N. O. (eds.), Methods in Enzymology, Academic Press Inc., New York and London.

    Google Scholar 

  36. Ochoa, S. 1955. Malic dehydrogenase from pig heart, Pages 735–739,in Colowick, S. P., and Kaplan, N. O. (eds.), Methods in Enzymology, Academic Press Inc., New York and London.

    Google Scholar 

  37. Smith, L. 1955. Spectrophotometric assay of cytochrome c oxidase. Pages 427–434,in Glick, D. (ed.), Methods of Biochemical Analysis, Wiley Interscience, New York.

    Google Scholar 

  38. Wharton, D. C., and Tzagoloff, A. 1967. Cytochrome oxidase from beef heart mitochondria. Pages 245–250,in Colowick S. P., and Kaplan N. O. (eds.). Methods in Enzymology, Academic Press Inc., New York and London.

    Google Scholar 

  39. Nason, A., and Vasington, F. D. 1963. Lipid-dependent DPNH-cytochrome c reductase from mammalian skeletal and heart muscle. Pages 409–415,in Colowick S. P., and Kaplan N. O. (eds.), Methods in Enzymology, Academic Press Inc., New York and London.

    Google Scholar 

  40. Roquebert, J., and Demichel, P. 1985. Inhibition of the alpha1 and alpha2 adrenoreceptor mediated pressor response in pithed rats by raubasine, tetrahydroalostonine and akuammigine. Eur. J. Pharmacol. 106:203–205.

    Google Scholar 

  41. Roquebert, J., Gomond, P., and Demichel, P. 1981. Antinoradrenergic activity of raubasine on isolated thoracic aorta and vas deferens of rats. J. Pharmacol. 12:393–403.

    Google Scholar 

  42. Demichel, P., and Roquebert, J. 1984. Effects of raubasine stereoisomers on pre- and postsynaptic alpha-adrenoreceptors in the rat vas deferens. Br. J. Pharmacol. 83:505–510.

    Google Scholar 

  43. Aghajanian, G. K., and Rogawski, M. A. 1983. The physiological role of alpha-adrenoreceptors in the central nervous system: new concepts from single cells studies. TIPS 4:315–317.

    Google Scholar 

  44. Sebban, C., Tesolin, B., and Guez, D. 1987. Electroencéphalogramme quantifié: intérêt dans l'évaluation d'une thérapeutique du vieillissement cérébral. Prosse Méd. 16:1154–1158.

    Google Scholar 

  45. Sebban, C., Tesolin, B., Coulomb, B., and Berthaux, P. 1989. Comparative effects of almitrine and raubasine, singly and in combination, on electroencephalographic activity in young and old rats. Exp. Gerontol. 24:11–24.

    Google Scholar 

  46. Benzi, G., Gorini, A., Ghigini, B., Arnaboldi, R., and Villa, R. F. 1993. Synaptosomal non-mitochondrial ATPase activities and drug treatment. Neurochem. Res. 18:719–726.

    Google Scholar 

  47. Benzi, G., Gorini, A., Ghigini, B., Arnaboldi, R., and Villa, R. F. 1994. Modifications by hypoxia and drug treatment on cerebral ATPase plasticity. Neurochem. Res. 19:517–524.

    Google Scholar 

  48. Nedergaard, O. A. 1985. Pre- and postjunctional effects of pinacidil on sympathetic neuroeffector transmission in rabbit blood vessels. Br. J. Pharmacol. 85 (Suppl.):338P.

    Google Scholar 

  49. Petersen, H. J., Kaergaard Nielsen C., and Arrigoni-Martelli, E. 1978. Synthesis and hypotensive activity of N-alkyl-N″-cyano-N′-pyridylguanidines. J. Med. Chem. 21:773–781.

    Google Scholar 

  50. Friedel, H. A., and Brogden, R. N. 1990. Pinacidil. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in the treatment of hypertension. Drugs 39:929–967.

    Google Scholar 

  51. Hamilton, T. C., Weston, A. H. 1989. Cromakalim, nicorandil and pinacidil; novel drugs which open potassium channels in smooth muscle. Gen. Pharmacol. 20:1–9.

    Google Scholar 

  52. Eltze, M. 1989. Glibenclamide is a competitive antagonist of cromakalim, pinacidil and RP 49356 in guinea-pig pulmonary artery. Eur. J. Pharmacol. 165:231–239.

    Google Scholar 

  53. Bray, K. M., Newgreen, D. T., Small, R. C., Southerton, J. S., and Taylor, S. G. 1987. Evidence that the mechanism of the inhibitory action of pinacidil in rat and guinea-pig smooth muscle differs from that of glyceryl trinitrate. Br. J. Pharmacol. 91:421–429.

    Google Scholar 

  54. Quast, U., and Cook, N. 1987. Comparison of BRL34915 and pinacidil in the guinea-pig portal vein. Naunyn-Schmiedeberg's Arch. Pharmacol. 335 (Suppl.):R64.

    Google Scholar 

  55. Weston, A. H., Bray, K. M., Duty, S., McHarg, A. D., Newgreen, D. T., and Southerton, J. S. 1988. In vitro studies on the mode of action of pinacidil. Drugs 36 (Suppl. 7):10–28.

    Google Scholar 

  56. Weston, A. H., Southerton, J. S., Bray, K. M., Newgreen, D. T., and Taylor, S. G. 1988. The mode of action of pinacidil and its analogs P1060 and P1368: results of studies in rat blood vessels. J. Cardiovasc. Pharmacol. 12 (Suppl. 2):S10-S16.

    Google Scholar 

  57. Laubie, M. 1982. Effects of almitrine bismesylate on gas exchange and ventilation in the anesthetized dog. Bull. Eur. Physiopath. Resp. 18:279–284.

    Google Scholar 

  58. Labrid, C. 1982. Current concepts on almitrine bismesylate mechanism of action. Bull. Eur. Physiopath. Resp. 18:299–306.

    Google Scholar 

  59. Laubie, M., Drouillat, M., and Schmitt, H. 1983. Nucleus tractus solitarii respiratory neurons in the chemoreceptor pathway activated by almitrine. Eur. J. Pharmacol. 93:87–93.

    Google Scholar 

  60. Laubie, M., Drouillat, M., and Schmitt, H. 1984. Ventrolateral medullary respiratory neurons and peripheral chemoreceptor stimulation by almitrine. Eur. J. Pharmacol. 102:437–442.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pastoris, O., Dossena, M., Foppa, P. et al. Modifications by chronic intermittent hypoxia and drug treatment on skeletal muscle metabolism. Neurochem Res 20, 143–150 (1995). https://doi.org/10.1007/BF00970538

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00970538

Key Words

Navigation