Skip to main content
Log in

Glucosylceramide Synthesized In Vitro from Endogenous Ceramide is Uncoupled from Synthesis of Lactosylceramide in Golgi Membranes from Chicken Embryo Neural Retina Cells

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

It is known that ceramide (Cer), the precursor of sphingoglycolipids and of sphingomyelin, participates in events leading to activation of the apoptotic pathway, and per se or through conversion to glucosylceramide (GlcCer) modulates formation of neuritic processes in developing neurons. To learn about the fate of de novo synthesized Cer and GlcCer we examined, in Golgi membranes from chicken embryo neural retina cells, the metabolic relationships of endogenous Cer, GlcCer and lactosylceramide (LacCer). Incubation of the membranes with UDP-[3H]Glc revealed a pool of endogenous Cer useful for synthesis of GlcCer. Most of the GlcCer synthesized, however, was not used for synthesis of LacCer, indicating that it was functionally uncoupled from LacCer synthase. On the other hand, incubation with UDP-[3H]Gal revealed a pool of endogenous GlcCer that depending of the integrity of the membranes was functionally coupled to LacCer and ganglioside synthesis. These results indicate that most GlcCer formed in vitro from Cer is topologically segregated from the synthesis of LacCer. However, subfractionation in sucrose gradients of Golgi membranes labeled with both precursors failed to separate membranes enriched in [3H]GlcCer from those enriched in [3H]Gal-labeled LacCer. It is concluded that despite both transfer steps co-localize in the Golgi membranes, coupling of GlcCer synthesis to LacCer synthesis requires conditions not present in our in vitro assay. This suggests that a coupling activity exists that could be relevant for regulation of the cytoplasmic levels of Cer and GlcCer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Chao, M. V. 1995. Ceramide: a potential second messenger in the nervous system. Mol. Cell. Neurosci. 6:91-96.

    Google Scholar 

  2. Hannun, Y. A. 1996. Functions of ceramide in coordinating cellular responses to stress. Science. 274:1855-1859.

    Google Scholar 

  3. Kok, J. W., Babia, T., Klappe, K., Egea, G., and Hoekstra, D. 1998. Ceramide transport from endoplasmic reticulum to Golgi apparatus is not vesicle-mediated. Biochem. J. 333:779-786.

    Google Scholar 

  4. Basu, S., Kaufman, B., and Roseman, S. 1968. Enzymatic synthesis of ceramide-glucose and ceramide-lactose by glycosyltransferases from embryonic chicken brain. J. Biol. Chem. 243: 5802-5804.

    Google Scholar 

  5. Coste, H., Martel, M. B., and Got, R. 1986. Topology of glucosylceramide synthesis in Golgi membranes from porcine submaxillary glands. Biochim. Biophys. Acta. 858:6-12.

    Google Scholar 

  6. Futerman, A. H., and Pagano, R. E. 1991. Determination of the intracellular sites and topology of glucosylceramide synthesis in rat liver. Biochem. J. 280:295-302.

    Google Scholar 

  7. Trinchera, M., Fabbri, M., and Ghidoni, R. 1991. Topography of glycosyltransferases involved in the initial glycosylations of gangliosides. J. Biol. Chem. 266:20907-20912.

    Google Scholar 

  8. Jeckel, D., Karrenbauer, A., Burger, K. N. J., van Meer, G., and Wieland, F. 1992. Glucosylceramide is synthesized at the cytosolic surface of various Golgi subfractions. J. Cell Biol. 117: 259-267.

    Google Scholar 

  9. Rosenwald, A. G., and Pagano, R. E. 1993. Intracellular transport of ceramide and its metabolites at the Golgi complex: insights from short-chain analogs. Adv. Lipid Res. 26:101-118.

    Google Scholar 

  10. Ichikawa, S., Sakiyama, H., Suzuki, G., Jwa Hidari, K. I.-P., and Hirabayashi, Y. 1996. Expression cloning of a cDNA for human ceramide glucosyltransferase that catalyzes the first glycosylation step of glycosphingolipid synthesis. Proc. Natl. Acad. Sci. USA. 93:4638-4643.

    Google Scholar 

  11. Marks, D. L., Wu, K., Paul, P., Kamisaka, Y., Watanabe, R., and Pagano, R. E. 1998. Oligomerization and topology of the Golgi membrane protein glucosylceramide synthase. J. Biol. Chem. 274: 451-456.

    Google Scholar 

  12. Warnock, D. E., Lutz, M. S., Blackburn, W. A., Young Jr., W. W., and Baenziger, J. U. 1994. Transport of newly synthesized glucosylceramide to the plasma membrane by a non-Golgi pathway. Proc. Natl. Acad. Sci. USA. 91:2708-2712.

    Google Scholar 

  13. Deutscher, S. L., and Hirschberg, C. B. 1986. Mechanism of galactosylation in the Golgi apparatus. A Chinese hamster ovary cell mutant deficient in translocation of UDP-galactose across Golgi vesicle membranes. J. Biol. Chem. 261:96-100.

    Google Scholar 

  14. Lannert, H., Bünning, C., Jeckel, D, and Wieland, F. T. 1994. Lactosylceramide is synthesized in the lumen of the Golgi apparatus. FEBS Lett. 342:91-96.

    Google Scholar 

  15. van Echten, G., and Sandhoff, K. 1998. Organization and topology of sphingolipid metabolism, in: B. M. Pinto (Ed.), Comprehensive natural Products Chemistry, Pergamon Elsevier Science, New York, Vol 3, chapter 5.

    Google Scholar 

  16. Maccioni, H. J. F., Daniotti, J. L., and Martina, J. A. 1999. Organisation of ganglioside synthesis in the Golgi apparatus. Biochim. Biophys. Acta. In press.

  17. Hamburger, V., and Hamilton, H. L. 1951. A series of normal stages in the development of the chick embryo. J. Morphol. 88: 49-92.

    Google Scholar 

  18. MaxzÚ d, M. K., Daniotti, J. L., and Maccioni, H. J. F. 1995. Functional coupling of glycosyl transfer steps for synthesis of gangliosides in Golgi membranes from neural retina cells. J. Biol. Chem. 270:20207-20214.

    Google Scholar 

  19. Rosales Fritz, V. M., and Maccioni, H. J. F. 1995. Effects of brefeldin A on synthesis and intracellular transport of ganglioside GT3 by chick embryo retina cells. J. Neurochem. 65:1859-1864.

    Google Scholar 

  20. Rosales Fritz, V. M., MaxzÚ d, M. K., and Maccioni, H. J. F. 1996. GT3 synthesis in the proximal Golgi occurs in a compartment different from those for GD3 and GM3 synthesis. J. Neurochem. 67:1393-1400.

    Google Scholar 

  21. Rosales Fritz, V. M., Daniotti, J. L., and Maccioni, H. J. F. 1997. Chinese hamster ovary cells lacking GM1 and GD1 a synthesize gangliosides upon transfection with human GM2 synthase. Biochim. Biophys. Acta. 1354:153-158.

    Google Scholar 

  22. MaxzÚ d, M. K., and Maccioni, H. J. F. 1997. Compartmental organization of the synthesis of GM3, GD3, and GM2 in Golgi membranes from neural retina cells. Neurochem. Res. 22: 455-461.

    Google Scholar 

  23. Panzetta, P., Maccioni, H. J. F., and Caputto, R. 1980. Synthesis of retinal gangliosides during chick embryonic development. J. Neurochem. 35:100-108.

    Google Scholar 

  24. Daniotti, J. L., Landa, C. A., and Maccioni, H. J. F. 1994. Regulation of ganglioside composition and synthesis is different in developing chick retinal pigment epithelium and neural retina. J. Neurochem. 62:1131-1136.

    Google Scholar 

  25. Rosenwald, A. G., and Pagano, R. E. 1993. Inhibition of glycoprotein traffic through the secretory pathway by ceramide. J. Biol. Chem. 268:4577-4579.

    Google Scholar 

  26. Chen, C. S., Rosenwald, A. G., and Pagano, R. E. 1995. Ceramide as a modulator of endocytosis. J. Biol. Chem. 270:13291-13297.

    Google Scholar 

  27. Hannun, Y. A., and Obeid, L. M. 1995. Ceramide: an intracellular signal for apoptosis. Trends Biochem. Sci. 20:73-77.

    Google Scholar 

  28. Schwarz, A., and Futerman, A. H. 1997. Distinct roles for ceramide and glucosylceramide at different stages of neuronal growth. J. Neurosci. 17:2929-2938.

    Google Scholar 

  29. Arce, A., Maccioni, H. J. F., and Caputto, R. 1971. The biosynthesis of gangliosides. The incorporation of galactose, N-acetylgalactosamine and N-acetylneuraminic acid into endogenous acceptors of subcellular particles from rat brain in vitro. Biochem. J. 121:483-493.

    Google Scholar 

  30. Maccioni, H. J. F., Arce, A., Landa, C., and Caputto, R. 1974. Rat brain microsomal gangliosides. Accessibility to a neuraminidase preparation and the possible existence of different pools in relation to their biosynthesis. Biochem. J. 138:291-298.

    Google Scholar 

  31. Caputto, R., Maccioni, H. J. F., and Arce, A. 1974. Biosynthesis of brain gangliosides. Mol. Cell. Biochem. 4:97-106.

    Google Scholar 

  32. Sjoberg, E. R., and Varki, A. 1993. Kinetic and spatial interrelationships between ganglioside glycosyltransferases and O-acetyltransferase(s) in human melanoma cells. J. Biol. Chem. 268:10185-10196.

    Google Scholar 

  33. Varki, A. 1998. Factors controlling the glycosylation potential of the Golgi apparatus. Trends Cell Biol. 8:34-40.

    Google Scholar 

  34. Rothman, J. E. 1994. Mechanisms of intracellular protein transport. Nature. 372:55-63.

    Google Scholar 

  35. Schweizer, A., Clausen, H., van Meer, G., and Hauri, H.-P. 1994. Localization of O-Glycan initiation, sphingomyelin synthesis, and glucosylceramide synthesis in Vero cells with respect to the endoplasmic reticulum-Golgi intermediate compartment. J. Biol. Chem. 269:4035-4041.

    Google Scholar 

  36. Ichikawa, S., and Hirabayashi, Y. 1998. Glucosylceramide synthase and glycosphingolipid synthesis. Trends Cell Biol. 8:198-202.

    Google Scholar 

  37. Bell, R. M., Ballas, L. M., and Coleman, R. A. 1981. Lipid topogenesis. J. Lipid Res. 22:391-403.

    Google Scholar 

  38. Abeijon, C., and Hirschberg, C. B. 1990. Topography of initiation of N-glycosylation reactions. J. Biol. Chem. 265:14691-5.

    Google Scholar 

  39. Burger, K. N., van der Bijl, P., and van Meer, G. 1996. Topology of sphingolipid galactosyltransferases in ER and Golgi: transbilayer movement of monohexosyl sphingolipids is required for higher glycosphingolipid biosynthesis. J. Cell Biol. 133:15-28.

    Google Scholar 

  40. van Helvoort, A., Smith, A. J., Sprong, H., Fritzsche, I., Schinkel, A. H., Borst, P., and van Meer, G. 1996. MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell. 87: 507-517.

    Google Scholar 

  41. Young, W. W. Jr., Lutz, M. S., Mills, S. E., and Lechler-Osborn, S. 1990. Use of brefeldin A to define sites of glycosphingolipids synthesis: GA2/GM2/GD2 synthase is trans to the brefeldin A block. Proc. Natl. Acad. Sci. USA. 87:6838-6842.

    Google Scholar 

  42. van Echten, G., Iber, H., Stotz, H., Takatsuki, A., and Sandhoff, K. 1990. Uncoupling of ganglioside biosynthesis by brefeldin A. Eur. J. Cell Biol. 51:135-139.

    Google Scholar 

  43. Lannert, H., Gorgas, K., Meissner, I., Wieland, F. T., and Jeckel, D. 1998. Functional organization of the Golgi apparatus in glycosphingolipid biosynthesis. Lactosylceramide and subsequent glycosphingolipids are formed in the lumen of the late Golgi. J. Biol. Chem. 273:2939-2946.

    Google Scholar 

  44. Kozireski-Chuback, D., Wu, G., and Ledeen, R. W. 1999. Upregulation of nuclear GM1 accompanies axon-like, but not dendrite-like, outgrowth in NG108-15 cells. J. Neurosci. Res. 55:107-18.

    Google Scholar 

  45. Sprong, H., Kruithof, B., Leijendekker, R., Slot, J. W., van Meer, G., and van der Sluijs, P. 1998. UDP-galactose:ceramide galactosyltransferase is a class I integral membrane protein of the endoplasmic reticulum. J. Biol. Chem. 273:25880-25888.

    Google Scholar 

  46. van Meer, G. 1998. Lipids of the Golgi membrane. Trends Cell Biol. 8:29-33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maxzúd, M.K., Maccioni, H.J.F. Glucosylceramide Synthesized In Vitro from Endogenous Ceramide is Uncoupled from Synthesis of Lactosylceramide in Golgi Membranes from Chicken Embryo Neural Retina Cells. Neurochem Res 25, 145–152 (2000). https://doi.org/10.1023/A:1007555903335

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007555903335

Navigation