Skip to main content
Log in

A New Subdivision, Marginal Division, in the Neostriatum of the Monkey Brain

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

A new subdivision, the “marginal division” (MrD), was discovered at the caudal border of the striatum and surrounds the rostral edge of the globus pallidus in the rat brain in our previous studies. The neuronal somata of the MrD are mostly fusiform in shape with their long axes lining dorsoventrally. The MrD is more densely filled with substance P (SP)-, Leucine-enkephalin (L-Enk)-, dynorphin B-, neurotensin-, somatostatin- and cholecystokinin (CCK)-immunoreactive fibers and terminal-like structures than the rest of the striatum. The MrD was confirmed in the cat neostriatum as well. The present study intended to explore whether the MrD exists in the monkey neostriatum (putamen) with Nissl, histochemical and immunohistochemical methods. A band of fusiform neurons were obviously identified at the caudomedial edge of the putamen. These neurons lie outside the lateral medullary lamina and indirectly surround the rostrolateral border of the globus pallidus. The abundance of SP-, L-Enk-, neuropeptide Y-, CCK-, dopamine- and serotonin-positive fibers and terminal-like structures with a few positive fusiform neurons accumulating at the caudomedial border of the putamen obviously distinguishes this zone from the rest of neostriatum and globus pallidus. The acetylcholinesterase (AChE) positive and nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) containing fusiform neurons are distinctly visualized in the same zone. The morphological figure and the location of these neurons, and the histochemical and immunohistochemical characteristics of this area coincide well with those of the MrD in the rat and cat striatum. This study thus convincingly identifies the existence of the MrD in the monkey neostriatum. It is fairly asserted that the MrD is a universal structure in the mammalian brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFFERENCES

  1. Shu, S. Y., Penny, G. R., and Peterson, G. M. 1988. The “Marginal Division”: a new subdivision in the neostriatum of the rat. J. Chem. Neuroanatomy 1:147–163.

    Google Scholar 

  2. Shu, S. Y., McGinty, J. F., and Peterson, G. M. 1990. High density of zinc-containing and dynorphin B-and substance P-immunoreactive terminals in the marginal division of the rat striatum. Brain Res. Bull. 24:2201–2205.

    Google Scholar 

  3. Bao, X. M. and Shu, S.Y. 1997. Distribution of neurotensin and somatostatin immunoreactivity in the marginal division of the rat striatum. Chinese J. Histochem. Cytochem. 6(6):1–5.

    Google Scholar 

  4. Bao, X. M. and Shu, S. Y. 1997. Distribution of Substance P-, Leu-enkephalin-, Cholecystokinin-immunoreactivity in the marginal division of the rat striatum. Chinese J. Neuroanat. 13(2): 107–110.

    Google Scholar 

  5. Bao, X. M., Shu, S. Y., and Li, S. X. 1993. The afferent projection in the marginal division of the rat striatum-Study on the WGA-HRP tracing with the anterograde or retrograde tract. Chinese J. of Neuroanat. 9(1):93–96.

    Google Scholar 

  6. Shu, S. Y., Bao, X. M., Li, S. X., and Xu, Z. W. 1993. Immuno-histochemical characteristics of afferent projection neurons in the marginal division of the rat striatum. Chinese J. of Anatomy 16(6):509–512.

    Google Scholar 

  7. Bao, X. M., Shu, S. Y., Niu, D. And Xu, Z. W. 1998. Distribution of substance P, Leu-enkephalin, neuropeptide Y and NADPH-d reactivities in the marginal division of the cat striatum. Chinese J. Neurosci. 14 (4):213–217.

    Google Scholar 

  8. Schoen, S. W. and Graybiel, A. M. 1993. Species-specific patterns of glycoprotein expression in the developing rodent caudoputamen: association of 5'-nucleotidase activity with dopamine islands and striosomes in rat, but with extrastriosomal matrix in mouse. J. Comp. Neurol. 333:578–596.

    Google Scholar 

  9. Heimer, L. and Alheid, G. F. 1991. Piecing together the puzzle of basal forebrain anatomy. Pages 1–42. in Napier, T. C., Kalivas, P. W. and Hanin, I. (eds), The Basal Forebrain. Plenum Press, New York.

    Google Scholar 

  10. Heimer, L., Zahm, D. S., and Alheid, G. F. 1995. Basal Ganglia. Pages 579–628. in Paxinos, G. (ed), The Rat Nervous System. Academic Press, New York.

    Google Scholar 

  11. Talley, E. M., Rosin, D. L., Lee, A., Guyenet, P. G., and Lynch, K. R. 1996. Distribution of Alpha 2A-adrenergic Receptor like immunoreactivity in the rat central nervous system. J. Comp. Neurol. 372(1):111–134.

    Google Scholar 

  12. Chudler, E. H., Sugiyama, K., and Dong, W. K. 1993. Nociceptive responses in the neostriatum and globus pallidus of the anesthetized rat. J. Neurophysiol. 69(5):1890–1903.

    Google Scholar 

  13. Chudler, E. H. and Dong, W. K. 1995. The role of the basal ganglia in nociception and pain. Pain 60:3–38.

    Google Scholar 

  14. Lavoie, B. and Parent, A. 1994. Pedunculopointine nucleus in the squirrel monkey: projection to the basal ganglia as revealed by anterograde tract-tracing methods. J. Comp. Neurol. 344(2):210–231.

    Google Scholar 

  15. Shu, S. Y., Ju, G., and Fan, L. 1988b. The glucose oxidase-DAB-nickel method in the peroxidase histochemistry of the nervous system. Neurosci. Lett. 85:169–171.

    Google Scholar 

  16. Nauta, W. J. H. and Domesick, V. B. 1984. Afferent and efferent relationships of the basal ganglia. Pages 3–33, in Nauta, W. J. H. and Domesick, V. B. (eds), Functions of the basal ganglia, Ciba Foundation Symposium 107, Pitman, London.

    Google Scholar 

  17. Graybiel, A. M. and Ragsdale, C. W. Jr. 1983. Biochemical anatomy of striatum. in Emson, P. C. (ed), Chemical Neuro-anatomy, Raven Press, New York.

    Google Scholar 

  18. Decavel, C., Lescaudron, L., Mons, N., and Calas, A. 1987. First visualization of dopaminergic neurons with a monoclonal antibody to dopamine: a light and electron microscopic study. J. Histochem. Cytochem. 35(11):1245–51.

    Google Scholar 

  19. Lorenzini, C. A., Baldi, E., Bucherelli, C., and Tassoni, G., 1995. Time-dependent deficits of rat's memory consolidation induced by trodotoxin injections into the caudo-putamen, nucleus accumbens, and globus pallidus. Neurobiol. Learn. Mem. 63 (1):87–93.

    Google Scholar 

  20. Noda, Y., Yamada, K., and Nabeshima, T. 1997. Role of nitric oxide in the effect of aging on spatial memory in rats. Behav. Brain Res. 83(1–2):153–158.

    Google Scholar 

  21. Yamada, K., Noda, Y., Komori, Y., Sugihara, H., Hasegawa, T., and Nabeshima, T. 1996. Reduction in the number of NADPH-diaphorase-positive cells in the cerebral cortex and striatum in aged rats. Neurosci. Res. 24(4):393–402.

    Google Scholar 

  22. Hasenohrl, R. U., Frisch, C., and Huston, J. P. 1998. Evidence for anatomical specificity for the reinforcing effects of SP in the nucleus basalis magnocellularis. Neuroreport 9 (1):7–10.

    Google Scholar 

  23. Ishizuk, N., Weber, J., and Amaral, D. G. 1990. Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. J. Comp. Neurol. 295:580–623.

    Google Scholar 

  24. Shu, S. Y., Bao, R., Bao, X. M., Zheng, Z. C., and Niu, D. B. 1998. Synaptic Connection between the efferent projection from the marginal division of the striatum and the Meynert's basal nucleus and its relationship to learning and memory behavior of the rat. Chinese J. Histochem. Cytochem. 7(1):1–11.

    Google Scholar 

  25. Orgren, S. O. 1985. Central serotonin neurons in avoidence learning: interactions with noradrenaline and dopamine neurons. Pharmacol. Biochem. Behav. 23 (1):107–123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shu, S.Y., Bao, X.M., Zhang, C. et al. A New Subdivision, Marginal Division, in the Neostriatum of the Monkey Brain. Neurochem Res 25, 231–237 (2000). https://doi.org/10.1023/A:1007523520251

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007523520251

Navigation