Skip to main content
Log in

Relationship Between the Ubiquitin-Dependent Pathway and Apoptosis in Different Cells of the Central Nervous System: Effect of Thyroid Hormones

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We have recently shown that sustained neonatal hyperthyroidism in the rat activates apoptosis of oligodendroglial cells (OLGc) and that inhibition of the proteasome-ubiquitin (Ub) pathway by lactacystin produces increased apoptosis in cerebellar granule cells (CGC). In the present study we have analyzed the relationship between the activation of the Ub-dependent pathway, the expression of the Ub genes and programmed cell death in neurons of the rat cerebellum and cerebral cortex and in OLGc. This study was carried out in normal animals, in rats submitted to sustained neonatal hyperthyroidism and in cell cultures treated with an excess of thyroid hormones. In neurons of the cerebral cortex, thyroid hormone produces an increase of Ub-protein conjugates, an enhancement in the expression of the Ub genes and an increase in apoptosis, while the opposite results are obtained in CGC. These results indicate that in neurons, the changes in the cell death program produced by thyroid hormone run in parallel with those occurring in the Ub-dependent pathway. In OLGc, thyroid hormone increases apoptosis but does not produce changes in the Ub pathway. Preliminary studies indicate that in coincidence with what occurs in optic nerves, the sciatic nerves both in controls and in hyperthyroid animals are unable to form Ub-protein conjugates. These results indicate that in cells of the CNS such as neurons, in which the Ub-dependent pathway is actively expressed, it appears to be closely correlated with apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Eayrs, J. T. 1964. Effect of neonatal hyperthyroidism on maturation and learning in the rat. Anim. Behav. 12:195-199.

    Google Scholar 

  2. Pasquini, J. M., and Adamo, A. M. 1994. Thyroid hormones and the central nervous system. Dev. Neurosci. 16:1-8.

    Google Scholar 

  3. Bhat, N. R., Bubba Rao, G., and Pieringer, R. A. 1981. Investigation on myelination “in vitro.” Regulation of sulfolipid synthesis by thyroid hormone in cultures of dissociated brain cells from embryonic mice. J. Biol. Chem. 256:1167-1171.

    Google Scholar 

  4. Pasquini, J. M., Faryna de Raveglia, I., Capitman, N., and Soto, E. F. 1981. Neonatal hypothyroidism and early undernutrition in the rat: Defective maturation of structural membrane components in the central nervous system. Neurochem. Res. 6:979-991.

    Google Scholar 

  5. Virgili, M., Saverino, O., Vaccari, M., Barnabei, O., and Contestabile, A. 1991. Temporal, regional and cellular selectivity of neonatal alteration of the thyroid state on neurochemical maturation in the rat. Exp. Brain Res. 83:555-561.

    Google Scholar 

  6. Patel, A. J., Hunt, A., and Kiss, J. 1989. Neonatal thyroid deficiency has differential effects on cell specific markers for astrocytes and oligodendrocytes in the rat brain. Neurochem. Int. 15:239-248.

    Google Scholar 

  7. Walters, S. N., and Morell, P. 1981. Effects of altered thyroid states on myelinogenesis. J. Neurochem. 36:1792-1801.

    Google Scholar 

  8. Adamo, A. M., Aloise, P. A., Soto, E. F., and Pasquini, J. M. 1990. Neonatal hyperthyroidism in the rat produces an increase in the activity of microperoxisomal marker enzymes coincident with biochemical signs of accelerated myelination. J. Neurosci. Res. 25:353-359.

    Google Scholar 

  9. Nicholson, J. L., and Altman, J. 1972. The effects of early hypo-and hyperthyroidism on the development of rat cerebellar cortex I. Cell proliferation and differentiation. Brain Res. 44:13-23.

    Google Scholar 

  10. Wiechsel, M. E. 1974. Effect of thyroxine on DNA synthesis and thymidine kinase activity during cerebellar development. Brain Res. 78:455-465.

    Google Scholar 

  11. Muller, Y., Rocchi, E., Lazaro, J. B., and Clos, J. 1995. Thyroid hormone promotes bcl-2 expression and prevents apoptosis of early differentiating cerebellar granule neurons. Int. J. Dev. Neurosci. 13:871-885.

    Google Scholar 

  12. Baas, D., Bourbeau, D., Sarlieve, L. L., Ittel, M. E., Dussault, J. H., and Puymirat, J. 1997. Oligodendrocyte maturation and progenitor cell proliferation are independently regulated by thyroid hormone. Glia 19:324-332.

    Google Scholar 

  13. Marta, C. B., Adamo, A. M., Soto, E. F., and Pasquini, J. M. 1998. Sustained neonatal hyperthyroidism in the rat affects myelination in the central nervous system. J. Neurosci. Res. 53: 251-259.

    Google Scholar 

  14. Ooka, H., Fujita, S., and Yoshimoto, E. 1983. Pituitary-thyroid activity and longevity in neonatally thyroxine-treated rats. Mech. Aging Dev. 22:113-120.

    Google Scholar 

  15. Timiras, P. 1986. Neuroendocrine System and Aging. Pages 51-57, in Vezzadini P., Facchini A., Labo G. (eds.), Thyroid hormones, brain monoamines and the aging brain, Rijswijk, Eurage.

    Google Scholar 

  16. Delic, J., Morange, M., and Magdelenat, H. 1993. Ubiquitin pathway involvement in human lymphocyte gamma-irradiation induced apoptosis. Mol. Cell. Biol. 13:4875-4883.

    Google Scholar 

  17. Cocks, J. A., Balazs, R., Johnson, A. L., and Eayrs, J. T. 1970. Effects of thyroid hormone on the biochemical maturation of rat brain: Conversion of glucose-carbon into amino acids. J. Neurochem. 17:1275-1285.

    Google Scholar 

  18. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275.

    Google Scholar 

  19. Adamo, A. M., Besio Moreno, M, Soto, E. F., and Pasquini, J. M. 1994. Ubiquitin-protein conjugates in different structures of the central nervous system of the rat. J. Neurosci. Res. 38:358-364.

    Google Scholar 

  20. Ciechanover, A., Heller, H., Elias, S., Haas, A. L., and Hershko, A. 1980. ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. Proc. Natl. Acad. Sci. USA 77:1365-1368.

    Google Scholar 

  21. Levine, R., Garland, D., Oliver, C., Amici, A., Climent, I., Lenz, A., Ahn, B., Shaltiel, S., and Stadman, E. 1990. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 186:464-478.

    Google Scholar 

  22. Oberhammer, F., Fritsch, G., Schimied, M., Pavelka, M, Prinz, D., Purchio, T., Lassmann, H., and Schulte-Hermann, R. 1993. Condensation of the chromatin at the membrane of an apoptotic nucleus is not associated with activation of an endonuclease. J. Cell Sci. 104:317-326.

    Google Scholar 

  23. Gallo, V., Kingsbury, A., Balazs, R., and Jorgensen, O.S. 1987. The role of depolarization in the survival and differentiation of cerebellar granule cells in culture. J. Neurosci. 7:2203-2213.

    Google Scholar 

  24. Borodinsky, L. N., and Fiszman, M. L., 1998. Extracellular potassium concentration regulates proliferation of immature cerebellar granule cells. Dev. Brain Res. 107:43-48.

    Google Scholar 

  25. Mc Carthy, K. D., and DeVellis, J. 1980. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell. Biol. 85:890-902.

    Google Scholar 

  26. Berti-Mattera, L. N., Larocca, J. N., de Iraldi, A. P., Pasquini, J. M., and Soto, E. F. 1984. Isolation of oligodendroglial cells from young and adult whole rat brains using an in situ generated Percoll density gradient. Neurochem. Int. 6:41-50.

    Google Scholar 

  27. Ponzoni, M., Bocca, P., Chiesa, V., Decensi, A., Pistoia, V., Raffaghello, L., Rozzo, C., and Montaldo, P. G. 1995. Differential effects of N-(4-hydroxyphenyl) retinamide and retinoic acid on neuroblastoma cells. Apoptosis versus differentiation. Cancer Res. 55:853-861.

    Google Scholar 

  28. Adamo, A. M., Llesuy, S. F., Pasquini, J. M., and Boveris, A. A. 1989. Brain chemiluminescence and oxidative stress in hyperthyroid rats. Biochem. J. 263:273-277.

    Google Scholar 

  29. Adamo, A. M., Pasquini, L. A., Besio Moreno, M., Oteiza, P. I., Soto, E. F., and Pasquini, J. M. 1999. Effect of oxidant systems on the ubiquitylation of proteins in the central nervous system. J. Neurosci. Res. 55:523-531.

    Google Scholar 

  30. Ciechanover, A. 1994. The Ubiquitin-proteasome proteolytic pathway. Cell 79:13-21.

    Google Scholar 

  31. Hershko, A., and Ciechanover, A. 1998. The Ubiquitin system. Ann. Rev. Biochem. 67:425-479.

    Google Scholar 

  32. Ferrer, I., Pozas, E., and Planas, A. M. 1997. Ubiquitination of apoptotic cells in the developing cerebellum of the rat following ionizing radiation or methylazoxymethanol injection. Acta Neuropathol. 93:402-407.

    Google Scholar 

  33. Soldatenkov, V. A., and Dritschilo, A. 1997. Apoptosis of Ewing' sarcoma cells is accompanied by accumulation of ubiquitinated proteins. Cancer Res. 57:3881-3885.

    Google Scholar 

  34. Tanimoto, Y., Onishi, Y., Hashimoto, S., and Kizaki, H. 1997. Peptidyl aldehyde inhibitors of proteasome induce apoptosis rapidly in mouse lymphoma RVC cells. J. Biochem. 121: 542-549.

    Google Scholar 

  35. Tawa, N. E. Jr, Odessey, R., and Golberg, A. L. 1997. Inhibitors of the proteasome reduce the accelerated proteolysis in atrophying rat skeletal muscles. J. Clin. Inv. 100:197-203.

    Google Scholar 

  36. Adamo, A. M., Besio Moreno, M., Carrasco, A., and Pasquini, J. M. 1997. Expression of the Ubiquitin genes in brain of normal and Fe/dextran injected rats. Neurochem. Res. 22:345-350.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasquini, L.A., Marta, C.B., Adamo, A.M. et al. Relationship Between the Ubiquitin-Dependent Pathway and Apoptosis in Different Cells of the Central Nervous System: Effect of Thyroid Hormones. Neurochem Res 25, 627–635 (2000). https://doi.org/10.1023/A:1007554902352

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007554902352

Navigation