Skip to main content
Log in

Anomeric preferences ofd-glucose uptake and utilization by cerebral cortex slices of rats

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

On aerobic incubation of rat cerebral cortex slices with anomers ofd-glucose and with 2-deoxy-d-glucose (2DG) for 5 min, the disappearance of β-d-glucose from the incubation mixture was greater than that of α-d-glucose and both anomers had a greater rate of disappearance than that of 2DG. In addition, there were significantly greater consumption of oxygen and production of lactate with the β-anomer than with the α-anomer. In similar experiments with3H-labeledd-glucose anomers and [1-3H]-3-O-methyl-d-glucose (3MG), the accumulation of [1-3H]-β-d-glucose (up to 5 min) by rat cerebral cortex slices was greater than that of [1-3H]-α-d-glucose. Although initially lower than that of the anomers, the accumulation of [1-3H]-3MG increased at a greater rate and, by 5 min of incubation, was greater than that of both glucose anomers. This preferential accumulation was seen to disappear when the slices were preincubated with 2DG (hexokinase inhibitor) or when the temperature of incubation was reduced to 20°C. Under those conditions the data with the glucose anomers were similar to those obtained with 3MG. Our data then suggested that the greater accumulation of β-d-glucose than of α-d-glucose by the slices was probably not due to differences in transport through brain cell membranes but rather to the preferential metabolism of the β-d-glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miwa, I., Maeda, K., andOkuda, J. 1978. Anomeric compositions ofd-glucose in tissues and blood of rat.Experientia 34:167–168.

    PubMed  Google Scholar 

  2. Bailey, J. M., Fishman, P. H., andPentchev, P. G. 1968. Studies on mutarotases. II. Investigation of possible rate-limiting anomerization in glucose metabolism.J. Biol. Chem. 243:4827–4831.

    PubMed  Google Scholar 

  3. Niki, A., Niki, H., Miwa, I., andOkuda, J. 1974. Insulin secretion by anomers ofd-glucose.Science 186:150–151.

    PubMed  Google Scholar 

  4. Grodsky, G. M., Fanska, R., West, L., andManning, M. 1974. Anomeric specificity of glucose-stimulated insulin-release: Evidence for glucoreceptor?Science 186:536–538.

    PubMed  Google Scholar 

  5. Faust, R. G. 1960. Monosaccharide penetration into human red blood cells by an altered diffusion mechanism.J. Cell Comp. Physiol. 56:103–121.

    Google Scholar 

  6. Sacks, W., andSacks, S. 1969. Cerebral metabolism of glucose anomers in human subjectin vivo. Pages 349–350,in Abst. 2nd ISN Meet., Milan.

  7. Fishman, P. H., andBailey, J. M. 1974. Mutarotases. X. Anomeric specific glucose transport into ascites tumor cells.Am. J. Physiol., 226:1007–1014.

    PubMed  Google Scholar 

  8. Miwa, I., Okuda, J., Niki, H., andNiki, A. 1974. Uptake of radioactived-glucose anomers by pancreatic islets.J. Biochem. (Tokyo) 78:1109–1111.

    Google Scholar 

  9. Okuda, J., Miwa, I., Sato, M., andMurata, T. 1977. Uptake of radioactived-glucose anomers by rat retina.Experientia 33:19–20.

    PubMed  Google Scholar 

  10. Okuda, J., andMiwa, I. 1971. Mutarotase effect on microdeterminations ofd-glucose and its anomers with β-d-glucose oxidase.Anal. Biochem. 43:312–315.

    PubMed  Google Scholar 

  11. Okuda, J., andMiwa, I. 1973. Newer developments in enzymic determination ofd-glucose and its anomers. Pages 155–189,in Glick, D. (ed.),Methods of Biochemical Analysis, Vol. 21, Wiley, New York.

    Google Scholar 

  12. Pazur, J. H. 1966. Glucose oxidase fromAspergillus niger. Pages 82–87,in Wood, W. A. (ed.),Methods in Enzymology, Vol. IX:Carbohydrate Metabolism, Academic Press, New York.

    Google Scholar 

  13. Yoshimura, T., andIsemura, T. 1971. Subunit structure of glucose oxidase fromPenicillium amagasakiens.J. Biochem. (Tokyo) 69:839–846.

    Google Scholar 

  14. Okuda, J., Miwa, I., andToyoda, Y. 1976. Multiple forms of rat kidney mutarotase.Chem. Pharm. Bull. 24:2893–2895.

    PubMed  Google Scholar 

  15. Takagaki, G. 1972. Control of aerobic glycolysis in guinea pig cerebral cortex slices.J. Neurochem. 19:1737–1751.

    PubMed  Google Scholar 

  16. Diamond, I., andFishman, R. A. 1973. High affinity transport and phosphorylation of 2-deoxy-d-glucose in synaptosomes.J. Neurochem. 20:1533–1542.

    PubMed  Google Scholar 

  17. Lermark, A., Sehlin, J., andTaeljedal, I.-B. 1975. The use of disappeared pancreatic islets cells in measurements of transmembrane transport.Anal. Biochem. 63:73–79.

    Google Scholar 

  18. Werner, W., Rey, H.-G., andWielinger, H. 1970. Ueber die Eigenschaften eines neuer Chromogens für die Blutzuckerbestimmung nach der GOD/POD Methode.Z. Anal. Chem. 252:224–228.

    Google Scholar 

  19. Okuda, J., Inoue, T., andMiwa, I. 1971. Rapid polarographic microdetermination of dissolved oxygen in water with flavin enzyme.Analyst 96:858–864.

    PubMed  Google Scholar 

  20. Hohrst, H.-J. 1971. L-(+)-Lactate determination with lactic dehydrogenase and DPN. Pages 266–270,in Bergmeyer, H.-U. (ed.),Methods of Enzymic Analysis, Academic Press, New York.

    Google Scholar 

  21. Honma, M., Satoh, T., Takezawa, J., andUi, M. 1977. An ultrasensitive method for the simultaneous determination of cyclic AMP and cyclic GMP in small-volume samples from blood and tissue.Biochem. Med. 18:257–273.

    PubMed  Google Scholar 

  22. McIlwain, H., andBachelard, H. S. 1971. Metabolic, ionic and electric phenomena in separated cerebral tissues. Pages 61–97,in McIlwain, H., andBachelard, H. S. (eds.),Biochemistry and the Central Nervous System. Churchill Livingstone, London.

    Google Scholar 

  23. Takagaki, G., Hirano, S., andNagata, Y. 1959. Some observations on the effect ofd-glutamate on the glucose metabolism and the accumulation of potassium ions in brain cortex slices.J. Neurochem. 4:124–134.

    PubMed  Google Scholar 

  24. Oldendorf, W. H. 1971. Brain uptake of radioactive amino acids and hexoses after arterial injection.Am. J. Physiol. 221:1629–1639.

    PubMed  Google Scholar 

  25. Betz, A. S., Drews, L. R., andGilboe, D. D. 1975. Inhibition of glucose transport into brain by phlorizine, phloretin and glucose analogues.Biochim. Biophys. Acta 94:124–129.

    Google Scholar 

  26. Bailey, J. M., Pentchev, P. G., andWood, J. 1965. Distribution of a “mutarotase” activity in rat tissues and possible function in active transport of sugars.Biochim. Biophys. Acta 406:124–129.

    Google Scholar 

  27. Miwa, I. 1972. Rapid polarographic assay ofd-glucose anomers with β-d-glucose oxidase.Anal. Biochem. 45:441–447.

    PubMed  Google Scholar 

  28. Bachelard, H. S. 1971. Specificity and kinetic properties of monosaccharide uptake into guinea-pig cerebral cortex slicesin vitro.J. Neurochem. 31:213–222.

    Google Scholar 

  29. Fletcher, A. M., andBachelard, H. S. 1978. Demonstration of high affinity hexose uptake in cerebral cortex slices.J. Neurochem., 31:233–236.

    PubMed  Google Scholar 

  30. Sokoloff, L., Reivich, M., Kennedy, C., DesRosiers, M. S., Patlak, C. S., Pettigrew, K. D., Skurada, O., andShinohara, M. 1977. The [14C]-deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in conscious and anesthetized rat.J. Neurochem. 28:897–916.

    PubMed  Google Scholar 

  31. Grill, V., andCerasi, E. 1975. Glucose-induced cyclic AMP accumulation in rat islets of Langerhans: Preferential effect of the alpha anomer.FEBS Lett. 54:80–83.

    PubMed  Google Scholar 

  32. Takagaki, G. 1974. Developmental changes in glycolysis in rat cerebral cortex.J. Neurochem. 23:479–487.

    PubMed  Google Scholar 

  33. Himwich, W. A. 1962. Biochemical and neurophysiological development of the brain in the neonatal period.Int. Rev. Neurobiol. 4:117–158.

    Google Scholar 

  34. Horton, R. W., Meldrum, B. S., andBachelard, H. S. 1973. Enzymatic and cerebral metabolic effects of 2-deoxy-d-glucose.J. Neurochem. 21:507–520.

    PubMed  Google Scholar 

  35. Okuda, J., Miwa, I., Inagaki, K., Ueda, M., andTaketa, K. 1978. D-Glucose anomeric preference of hexokinase in higher animals.J. Biochem. (Tokyo) 84:993–995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagata, Y., Nanba, T., Ando, M. et al. Anomeric preferences ofd-glucose uptake and utilization by cerebral cortex slices of rats. Neurochem Res 4, 505–516 (1979). https://doi.org/10.1007/BF00964644

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964644

Keywords

Navigation