Skip to main content
Log in

Computer simulation of metabolism in palmitate-perfused rat heart. II. Behavior of complete model

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Intermediary metabolism in rat hearts persfused with 11 mM glucose plus 1 mM palmitate was simulated by a computer model. Several enzyme submodels in a previous version of the isolated rat heart computer model wre improved, and a new fatty acid oxidation pathway model was added. Compartmentation of metabolites in a pseudostationary state was calculated, and its implications are discussed, e.g., citrate level may not regulate glycolysis because it is mostly mitochondrial. Citrate synthetase, controlled largely by its inhibitors, is of key importance in regulating fatty acid metabolism. The response of aconitase to the mitochondrial Mg2+ levels is of major importance in setting both the mitochondrial citrate and isocitrate levels. Pyruvate dehydrogenase is about 96% in the inactive phosphorylated form, and the active form is also 15% inhibited by products, severely limiting pyruvate oxidation and causing preferential utilization of palmitate as the metabolic fuel. The simulation is consistent with a creatine phosphate shuttle which delivers high energy phosphate to the site of its utilization for mechanical work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barman, T.E.,Enzyme Handbook, New York: Springer-Verlag, 1969.

    Google Scholar 

  2. Bernstein, L.H. and J. Everse. Studies on the mechanism of the malate dehydrogenase reaction.J. Biol. Chem. 253:8702–8707, 1978.

    CAS  PubMed  Google Scholar 

  3. Blair, J.McD. Magnesium and the aconitase equilibrium: Determination of apparent stability constants of magnesium substrate complexes from equilibrium: Determination of apparent stability constants of magnesium substrate complexes from equilibrium data.Eur. J. Biochem. 8:287–291, 1969.

    Article  CAS  PubMed  Google Scholar 

  4. Braunstein, A.E., Amino group transfer. In:The Enzymes, edited by P.D. Boyer. New York: Academic Press, 1973, vol. 9, pp. 370–481.

    Google Scholar 

  5. Caggiano, A. V. and G. L. Powell. Regulation of enzymes by fatty acyl coenzyme A. Site-specific binding of fatty acyl coenzyme A by citrate synthase—a spin-labeling study.J. Biol. Chem. 254:2800–2806, 1979.

    CAS  PubMed  Google Scholar 

  6. Chen, R.F. and G.W.E. Plaut. Activation and inhibition of DPN-liked isocitrate dehydrogenesa of heart by certain nucleotides.Biochemistry 2:1023–1032, 1963.

    CAS  PubMed  Google Scholar 

  7. Colman, R.F., Mechanisms for the oxidative decarboxylation of isocitrate: Implications for control.Adv. Enzyme Regul. 13:413–433, 1975.

    CAS  PubMed  Google Scholar 

  8. Constantinides, S.M. and W.C. Deal. Reversible dissociation of tetrameric rabbit muscle glyceraldehyde 3-phosphate dehydrogenase into dimers or monomers by adenosine triphosphate.J. Biol. Chem. 244:5695–5702, 1969.

    CAS  PubMed  Google Scholar 

  9. Cornell, N.W., M. Leadbett, and R.L. Veech, Effect of free magnesium concentration and ionic strength of equilibrium constants for the glyceraldehyde phosphate a dehydrogenase and phsophoglycerate kinase reactions.J. Biol. Chem. 254:6522–6527, 1979.

    CAS  PubMed  Google Scholar 

  10. Darnall, D.W. and L.V. Murray, Effects of ATP and 2,3-diphosphoglycerate on glyceraldehyde 3-phosphate dehydrogenase activity.Biochem. Biophys. Res. Commun. 46:1222–1227, 1972.

    Article  CAS  PubMed  Google Scholar 

  11. Denton, R.M., D.A. Richards, and J.G. Chin. Calcium ions and the regulation of NAD+-liked isocitrate dehydrogenase from the mitochondria of rat heart and other tissues.Biochem. J. 176:899–906 1978.

    CAS  PubMed  Google Scholar 

  12. Dölken, G., E. Leisner, and D. Pette. Turnover of malate dehydrogenase isozymes in rabbit liver and heart.Eur. J. Biochem. 47:333–342, 1974.

    PubMed  Google Scholar 

  13. Duggleby, R.G. and D.T. Dennis. Nicotinamide adenine dinucleotide-specific glyceraldehyde 3-phosphat dehydrogenase from Pisum sativum. Assay and steady state kinetics.J. Biol. Chem. 249:167–174, 1974.

    CAS  PubMed  Google Scholar 

  14. Eggleston, L.V. and R. Hems. Separation of adenosine phosphates by paper chromatography and the equilibrium constant of myokinase system.Biochem. J. 52:156–160, 1952.

    CAS  PubMed  Google Scholar 

  15. Furfine, C.S. and S.F. Velick. The acyl-enzyme intermediate and the kinetic mechanism of the glyceraldehyde 3-phosphate dehydrognease reaction.J. Biol. Chem. 240:844–855, 1965.

    CAS  PubMed  Google Scholar 

  16. Harrigan, P.J. and D.R. Trentham. Kinetic studies of the acylation of pig muscle D-glyceraldehyde 3-phosphate dehydrogenase by 1,3-diphosphoglycerate and of proton uptake and release in the overall enzyme mechanism.Biochem. J. 135:695–703, 1973.

    CAS  PubMed  Google Scholar 

  17. Harris, J.I. and M. Waters. Glyceraldehyde 3-phosphate dehydrogenase. In:The Enzymes, edited by P.E. Boyer, New York: Academic, 1976, vol. 13, pp. 1–49.

    Google Scholar 

  18. Heinrich, R. and T.A. Rapoport. A linear steady-state treatment of enzymatic chains. Critique of the crossover theorem and a general procedure to identify interaction sites with an effector.Eur. J. Biochem. 42:97–105, 1974.

    CAS  PubMed  Google Scholar 

  19. Hoagland, V.D. and D.C. Teller. Influence of stubstrates on the dissociation of rabbit muscle D-glyceraldehyde 3-phosphate dehydrogenase.Biochemistry 8:594–602, 1969.

    Article  CAS  PubMed  Google Scholar 

  20. Kimball, D.F., L. Peterson, D.J. McLoughlin, and R.G. Wolfe. Malate dehydrogenase. Kinetic studies withmeso-tartarate and 2-keto-3-hydroxysuccinate. Comparison of the mitochondrial and supernatant pig heart enzymes.Arch. Biochem. Biophys. 195:66–73, 1971.

    Google Scholar 

  21. Kohn, M.C., Computer simulation of metabolism in palmitate-perfused rat heart. III. Sensitivity analysis.Ann. Biomed. Eng. 11:533–549, 1983.

    CAS  PubMed  Google Scholar 

  22. Kohn, M.C., M.J. Achs, and D. Garfinkel. Distribution of adenine nucleotides in the perfused rat heart.Am. J. Physiol. 232:R158-R163, 1977.

    CAS  PubMed  Google Scholar 

  23. Kohn, M.C., M.J. Achs, and D. Garfinkel. Computer simulation of metabolism in pyruvate-perfused rat heart. I. Model construction.Am. J. Physiol. 237:R153-R158, 1979.

    CAS  PubMed  Google Scholar 

  24. Kohn, M.C., M.J. Achs, and D. Garfinkel. Computer simulation of metabolism inpyruvate perfused rat heart. II. Krebs cycle.Am. J. Physiol. 237:R159-R166, 1979.

    CAS  PubMed  Google Scholar 

  25. Kohn, M.C. and D. Garfinkel. Computer simulation of metabolism in palmitate-perfused rat heart. I. Plamitate oxidation.Ann. Biomed. Eng. 11:361–384, 1983.

    CAS  PubMed  Google Scholar 

  26. Kohn, M.C., L.E. Menten, and D. Garfinkel. A convenient computer program for fitting enzymatic rate laws to steady-state data.Comput. Biomed. Res. 12:461–469, 1979.

    Article  CAS  PubMed  Google Scholar 

  27. Kreitsch, W.K.G. and T. Bucher. 3-Phosphoglycerate kinase from rabbit skeletal muscle and years.Eur. J. Biochem. 17:568–580, 1970.

    Google Scholar 

  28. LaNoue, K.F., J. Duszynski, J.A. Watts, and E. McKee. Kinetic properties of aspartate transport in rat heart mitochondrial inner membranes.Arch. Biochem. Biophys. 195:578–590, 1979.

    Article  CAS  Google Scholar 

  29. LaNoue, K.F. and A.C. Schoolwerth. Metabolictransport in mitochondria.Ann. Rev. Biochem. 48:871–922, 1979.

    CAS  PubMed  Google Scholar 

  30. Larsson-Raźnikiewicz, M. and L. Arvidsson. Inhibition of phosphoglycerate kinase by products and product homologues.Eur. J. Biochem. 22:506–512, 1971.

    PubMed  Google Scholar 

  31. Larsson-Raźnikiewicz, M. and B. Schierbeck, Activation and inhibition of the phosphoglycerate kinase reaction by ATP4−.Biochim. Biophys. Acta 48:283–287, 1977.

    Google Scholar 

  32. Lodola, A., J.D. Shore, D.M. Parker, and J. Holbrook. Malate dehydrogenase of the cytosol. A kinetic investigation of the reaction mechanism and a comparison with lactate dehydrogenase.Biochem. J. 175: 987–998, 1978.

    CAS  PubMed  Google Scholar 

  33. Markland, F.S. and C.L. Wadkins. Adenosine triphosphate-adenosine 5′-monophosphate phosphotransferase of bovine liver mitochondria. I. Isolation and chemical properties.J. Biol. Chem. 241:4124–4135. 1966.

    CAS  PubMed  Google Scholar 

  34. Menten, L.E., M.C. Kohn, and D. Garfinkel. A convenient computer program for estimation of enzyme and metabolite concentrations in multienzyme systems.Comput. Biomed. Res. 14:91–102, 1981.

    Article  CAS  PubMed  Google Scholar 

  35. McCormack, J.G. and R.M. Denton. The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex.Biochem. J. 180:533–544, 1979.

    CAS  PubMed  Google Scholar 

  36. Morgan, H.E., B.H.L. Chua, E.O. Fuller, and D. Siehl. Regulation of protein synthesis and degradation during in vitro cardiac work.Am. J. Physiol. 238:E431-E442, 1980.

    CAS  PubMed  Google Scholar 

  37. Murphy, E., K.E. Cool, R.O. Vitale, M.E. Tischeler, and J.R. Williamson. Kinetics and regulation of the glutamate-aspartate translocator in rat liver mitochondria.J. Biol. Chem. 254:8369–8376, 1979.

    CAS  PubMed  Google Scholar 

  38. Nihei, T., L. Noda, and M.F. Morales. Kinetic properties and equilibrium constant of the adenosine triphosphate-creatine transphosphorylase catalyzed reaction.J. Biol. Chem. 236:3203–3213, 1961.

    CAS  PubMed  Google Scholar 

  39. Neely, J.R., H. Bowman, and H.E. Morgan. Effects of ventricular pressure development and palmitate on glucose transport.Am. J. Physiol. 216:804–811, 1969.

    CAS  PubMed  Google Scholar 

  40. Neely, J.R., M.J. Rovetto, and J.F. Oram. Myocardial utilization of carbohydrate and lipids.Prog. Cardiovasc. Dis. 15:289–329, 1972.

    CAS  PubMed  Google Scholar 

  41. Neely, J.R., C.F. Whitfield, and H.E. Morgan. Regulation of glycogenolysis in hearts: Effects of pressure development, glucose, and FFA.Am. J. Physiol. 219:1083–1088, 1970.

    CAS  PubMed  Google Scholar 

  42. Neely, J.R., K.M. Whitmer, and S. Mochizuki. Effects of mechanical activity and hormones on myocardial glucose and fatty acid utilization.Circ. Res. Suppl. 1 38:I22-I30, 1976.

    CAS  Google Scholar 

  43. Oguchi, M., E. Gerth, B. Fitzgerald, and J.H. Park. Regulation of glyceraldehyde 3-phosphate dehydrogenase by phosphocreatine and adenosine triphosphate.J. Biol. Chem. 248:5571–5576, 1973.

    CAS  PubMed  Google Scholar 

  44. Oram, J.F., S.I. Bennetch, and J.R. Neely. Regulation of fatty acid utilization of isolated perfused rat hearts.J. Biol. Chem. 248:5299–5309, 1973.

    CAS  PubMed  Google Scholar 

  45. Ottaway, J.H. and C.L. McMinn. Control points in the citric acid cycle. In:Enzyme Regulation and Mechanicsm of Action, edited by P. Mildner and B. Ries, New York: Pergamon Press, 1980, pp. 69–82.

    Google Scholar 

  46. Ovadi, J., J. Batke, F. Bartha, and T. Keleti. Effect of association-dissociation of the catalytic properties of glyceraldehyde 3-phosphate dehydrogenase.Arch. Biochem. Biophys. 193:29–33, 1979.

    Article  Google Scholar 

  47. Ovadi, J. and T. Keleti. Kinetic evidence for interaction between aldolase and D-glyceraldehyde-3-phosphate dehydrogenase.Eur. J. Biochem. 85:157–161, 1978.

    Article  CAS  PubMed  Google Scholar 

  48. Oza, N.B. and J.D. Shore. The effects of adenine nucleotides on NADH binding to mitochondrial malate dehydrogenase.Arch. Biochem. Biophys. 154:360–365, 1973.

    Article  CAS  PubMed  Google Scholar 

  49. Palmieri, F., E. Quagliariello, and M. Klingenberg. Kinetics and specificity of the oxoglutarate carrier in rat-liver mitochondria.Eur. J. Biochem. 29:408–416, 1972.

    Article  CAS  PubMed  Google Scholar 

  50. Plaut, G.W.E., C.P. Cheung, R.J. Suhadolnik, and T. Aogaichi. Cosubstrate and allosteric modifier activities of structural analogues of NAD and ADP for NAD-specific isocitrate dehydrogenase from bovine heart.Biochemistry 18:3430–3438, 1979.

    Article  CAS  PubMed  Google Scholar 

  51. Plaut, G.W.E., V.L. Schramm, and T. Aogaichi. Action of magnesium ion on diphosphopyridine nucleotide-lined isocitrate dehydrogenase from bovine heart. Characterization of the forms of the substrate and modifier of the reaction.J. Biol. Chem. 249:1848–1856, 1974.

    CAS  PubMed  Google Scholar 

  52. Raval, D.N. and R.G. Wolfe. Malic dehydrogenase. IV. pH dependence of the kinetic paramters.Biochemistry 1:1118–1123, 1962.

    CAS  PubMed  Google Scholar 

  53. Rose, I.A. The state of magnesium in cells as estimated from the adenylate kinase equilibrium.Proc. Nat. Acad. Sci. USA 61:1079–1086, 1968.

    CAS  PubMed  Google Scholar 

  54. Rushbrook, I.J. and R.A. Harvey. Nicotinamide adenine dinucleotide dependent isocitrate dehydrogenase from beef hearts: Heterogeneity and enzyme dissociation.Biochemistry 17:5539–5546, 1978.

    Article  Google Scholar 

  55. Saks, V.A., V.V. Kuprianov, G.V. Elizarova, and W.E. Jacobus. Studies of energy transport in heart cells. The importance of creative kinase localization for the coupling of mitochondrial phosphocreatine production to oxidative phosphorylation.J. Biol. Chem. 255:755–763, 1980.

    CAS  PubMed  Google Scholar 

  56. Scopes, R.K. Crystalline 3-phosphoglycerate kinase from skeletal muscle.Biochem. J. 113:551–554, 1969.

    CAS  PubMed  Google Scholar 

  57. Scopes, R.K. The steady-state kinetics of yeast phosphoglycerate kinase. Anomalous kinetic plots and the effects of salts on activity.Eur. J. Biochem. 85:503–516, 1978.

    Article  CAS  PubMed  Google Scholar 

  58. Silverstein, E. and G. Sulebele. Equilibrium kinetic study of the mechanism of mitochondrial and supernatant malate dehydrogenase of bovine heart.Biochim. Biophys. Acta. 185:297–304, 1969.

    CAS  PubMed  Google Scholar 

  59. Sluse, F.E., C. Duyckaerts, C. Liébecq, and C.M. Sluse-Goffart. Kinetic and binding properties of the oxoglutarate translocator of rat heart mitochondria.Eur. J. Biochem. 100:3–17, 1979.

    Article  CAS  PubMed  Google Scholar 

  60. Sluse, E.F., G. Goffart, and C. Liébecq. Mechanism of the exchanges catalysed by the oxoglutarate translocator of rat-heart mitochondria. Kinetics of the external product inhibition.Eur. J. Biochem. 32: 283–291, 1973.

    Article  CAS  PubMed  Google Scholar 

  61. Smith, C.M. and J.R. Williamson. Inhibition of citrate synthase by succinyl-CoA and other metabolites.FEBS Lett. 18:35–38, 1971.

    Article  CAS  PubMed  Google Scholar 

  62. Stein, A.M., J.H. Stein, and S.K. Kirkman. Diphosphopyridine nucleotide specific isocitric dehydrogenase of mammalian mitochondria. I. On the roles of pyridine nucleotide transhydrogenase and the isocitric dehydrogenases in the respiration of mitochondria of normal and neoplastic tissues.Biochemistry 6:1370–1379, 1967.

    CAS  PubMed  Google Scholar 

  63. Tischler, M.E., J. Pachence, J.R. Williamson, and K.F. LaNoue. Mechanism of glutamate-aspartate translocation across thhe mitochondrial inner membrane.Arch. Biochem. Biophys. 173:448–462, 1976.

    Article  CAS  PubMed  Google Scholar 

  64. Watts, D.C., Creatine kinase (adenosine 5′-triphosphate-creatine phosphotransferase). In:The Enzymes, edited by P.D. Boyer. New York: Academic Press, 1973, vol. 8, pp. 383–455.

    Google Scholar 

  65. Wieland, O. and L. Weiss. Inhibition of citrate-synthase bypalmityl-coenzyme A.Biochem. Biophys. Res. Commun. 13:26–31, 1963.

    Article  CAS  PubMed  Google Scholar 

  66. Yang, S.T. and W.C. Deal. Metabolic control and structure of glycolytic enzymes. VII. Destabilization and inactivation of yeast glyceraldehyde 3-phosphate dehydrogenase by adenosine phosphate and chymotrypsin.Biochemistry 8:2814–2820, 1969.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohn, M.C., Garfinkel, D. Computer simulation of metabolism in palmitate-perfused rat heart. II. Behavior of complete model. Ann Biomed Eng 11, 511–531 (1983). https://doi.org/10.1007/BF02364082

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02364082

Keywords

Navigation