Skip to main content
Log in

A spectroscopic investigation of growth regimes in silane-ammonia discharges used for plasma nitride deposition

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Using optical emission spectroscopy (OES) we have been able to distinguish three operating regimes for the ammonia-silane glow discharge used in plasma nitride deposition. By monitoring the deposition rate and analyzing the structure and composition of thea-SiN: H films it has been possible to correlate these three plasma regimes with three distinct deposition mechanisms. The growth plasma may be tuned to each of these regimes by varying one or more of the following three external parameters: ammonia mole fraction, r .f. power, and gas flow rate. Choice of these parameters allows control of the NH n radical concentration and the residence time in the reactor, and hence control over the number of gas-phase SiH n -NH n radical-radical reactions. Thus OES makes control of the film deposition mechanism possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. R. M. Grovenor,Microelectronic Materials, Adam Hilger, Bristol and Philadelphia, (1989).

    Google Scholar 

  2. D. A. Anderson and W. E. Spear,Philos. Mag. 35, 1 (1977).

    Google Scholar 

  3. H. Kurata, M. Hirose, and Y. Osaka,Jpn. J. Appl. Phys. 20, L811 (1981).

    Google Scholar 

  4. T. Noguchi, S. Usui, A. Sawada, Y. Kanoh, and M. Kukuchi,Jpn. J. Appl. Phys. 21, L485 (1982).

    Google Scholar 

  5. N. Ibaraki and H. Fritzsche,Phys. Rev. B. 30, 5791 (1984).

    Google Scholar 

  6. H. Watanabe, K. Katoh, and M. Yasui,Thin Solid Films 106, 263 (1983).

    Google Scholar 

  7. F. Alvarez and I. Chambouleyron,Sol. Energy. Mater. 10, 151 (1984).

    Google Scholar 

  8. G. M. Samuelson and K. M. Mar,J. Electrochem. Soc. 129, 1173 (1982).

    Google Scholar 

  9. B. Dunnett, D. I. Jones, and A. D. Stewart,Philos. Mag. B. 53, 159 (1986).

    Google Scholar 

  10. D. L. Smith, A. S. Alimonda, and C. Chen,J. Electrochem. Soc. 137, 614 (1990).

    Google Scholar 

  11. F. J. Kampas and R. R. Corderman,J. Non-Cryst. Solids. 59–60, 683 (1983).

    Google Scholar 

  12. F. J. Kampas,Mater. Res. Soc. Symp. Proc. 30, 291 (1984).

    Google Scholar 

  13. G. Suchaneck, J. Monch, K. Schade, and W. Paul,J. Non-Cryst. Solids. 90, 323 (1987).

    Google Scholar 

  14. B. Dunnett, P. G. LeComber, and W. E. Spear,Philos. Mag. B. 57, 483 (1988).

    Google Scholar 

  15. F. J. Kampas and R. W. Griffith,J. Appl. Phys. 52, 1285 (1980).

    Google Scholar 

  16. A. Matsuda and K. Tanaka,Thin Solid Films 92, 171 (1982).

    Google Scholar 

  17. W. Bauer, K. H. Becker, R. Duren, C. Hubrich, and R. Meuser,Chem. Phys. Lett. 108, 560 (1984).

    Google Scholar 

  18. R. Karcher, L. Ley, and R. L. Johnson,Phys. Rev. B. 30, 1896 (1984).

    Google Scholar 

  19. G. Lucovsky, D. V. Tsu, and R. J. Markunas,Mater. Res. Soc. Symp. Proc. 68, 323 (1986).

    Google Scholar 

  20. L. Pauling,The Nature of the Chemical Bond, Cornell University Press, Ithaca, New York (1960), p. 65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hicks, S.E., Gibson, R.A.G. A spectroscopic investigation of growth regimes in silane-ammonia discharges used for plasma nitride deposition. Plasma Chem Plasma Process 11, 455–472 (1991). https://doi.org/10.1007/BF01447159

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01447159

Key words

Navigation