Skip to main content
Log in

Removal of SO2 and the simultaneous removal of SO2 and NO from simulated flue gas streams using dielectric barrier discharge plasmas

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A gas-phase oxidation method using dielectric barrier discharges (DBDs) has been developed to remove SO2 and to simultaneously remove SO2 and NO from gas streams that are similar to gas streams generated by the combustion of fossil fuels. SO2 and NO removal efficiencies are evaluated as a function of applied voltage, temperature, and concentrations of SO2, NO, H2O(g), and NH3. With constant H2O(g) concentration, both SO2 and NO removal efficiencies increase with increasing temperature from 100 to 160°C. At 160°C with 15% by volume H20(g), more than 95% of the NO and 32% of the S02 are simultaneously removed from the gas stream. Injection of NH3 into the gas stream caused an increase in S02 removal efficiency to essentially 100%. These results indicate that DBD plasmas have the potential to simultaneously remove SO2 and NO from gas streams generated by large-scale fossil fuel combustors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Spengler, M. Brauer, and P. Koutrakis,Environ. Sci. Technol. 24, 946 (1990).

    Google Scholar 

  2. P. J. Temple,J. Air Pollut. Control Assoc. 22, 271 (1972).

    Google Scholar 

  3. E. O. Edney, D. C. Stiles, and J. W. Spence, A Laboratory Study to Evaluate the Impact of NOx and Oxidants on Atmospheric Corrosion of Galvanized Steel,ACS Svmp. Ser. 318, 172 (1986).

    Google Scholar 

  4. E. B. Cowling,Environ. Sci. Technol. 16, 110A (1982).

    Google Scholar 

  5. M. E. Bassett and J. H. Seinfeld,Atmos. Environ. 18, 1163 (1984).

    Google Scholar 

  6. C. S. Sloane and G. T. Wolff,Atmos. Environ. 19, 669 (1985).

    Google Scholar 

  7. H. B. Singh,Environ. Sci. Technol. 21, 320 (1987).

    Google Scholar 

  8. C. V. Mathai,J. Air Waste Manage. Assoc. 40, 1486 (1990).

    Google Scholar 

  9. L. M. Thomas, USEPA J. (Oct. 1987).

  10. S. Jordan,Radial. Phys. Chem. 31, 21 (1988).

    Google Scholar 

  11. S. Machi, O. Tokunaga, K. Nishimura, S. Hashimoto, W. Kawakami, and M. Washino,Radial. Phys. Chem. 9, 371 (1977).

    Google Scholar 

  12. O. Tokunaga, K. Nishimura, and M. Washino,International Journal of Applied Radiation and Isotopes 29, 87 (1978).

    Google Scholar 

  13. N. Frank, S. Hirano, and K. Kawamura,Radial. Phys. Chem. 31, 57 (1988).

    Google Scholar 

  14. H. R. Paur, S. Jordan, and W. Baumann,J. Aerosol Sci. 19, 1397–1400 (1988).

    Google Scholar 

  15. B. Eliasson and B. Gellert,J. Appl. Phys. 68, 2026 (1990).

    Google Scholar 

  16. J. G. Calvert and W. R. Stockwell,Mechanism and Rates of the Gas-Phase Oxidations of Sulfur Dioxide and Nitrogen Oxides in the Atmosphere, Ann Arbor Scientific Publication, Ann Arbor (1984).

    Google Scholar 

  17. F. Yin, D. Grosjean, and J. H. Seinfeld,J. Geophy. Res. 91, 14417 (1986).

    Google Scholar 

  18. J. D. Butler,Air Pollution Chemistry, Academic Press, New York (1979), p. 275.

    Google Scholar 

  19. D. L. Baulch, R. A. Cox, and P. J. Crutzen,J. Phys. Chem. Ref. Data 11, 327 (1982).

    Google Scholar 

  20. O. Tokunaga and N. Suzuki,Radial. Phys. Chem. 24, 145 (1984).

    Google Scholar 

  21. C. Willis and A. D. Boyd,Int. J. Radial. Phys. Chem. 8, 71 (1976).

    Google Scholar 

  22. U. Kogelschatz, B. Eliasson, and M. Hirth,Ozone Sci. Technol. 10, 367 (1988).

    Google Scholar 

  23. B. Eliasson, M. Hirth, and U. Kogelschatz,J. Phys. D: Appl. Phys. 20, 1421 (1987).

    Google Scholar 

  24. W. R. Browne and E. E. Stone, Sulfur Dioxide Conversion under Corona Discharge Catalysis, prepared for HEW under contract PH 86-65-2 (1965).

  25. I. Sardja and S. K. Dhali,Appl. Phys. Lett. 56, 21 (1990).

    Google Scholar 

  26. M. B. Chang, J. H. Balbach, M. J. Rood, and M. J. Kushner,J. Appl. Phys. 69, 4409 (1991).

    Google Scholar 

  27. W. C. Neely, E. I. Newhouse, and S. Pathirana,Chem. Phys. Lett. 155, 381 (1989).

    Google Scholar 

  28. J. W. Bozzelli and R. B. Barat,Plasma Chem. Plasma Process.8, 293 (1988).

    Google Scholar 

  29. G. H. Ramsey, N. Plaks, W. H. Ponder, B. E. Daniel, and L. E. Hamel, Proceedings of the 83rd Annual Air and Waste Management Association Meeting, Pittsburgh, Pennsylvania, Paper No. 90–109.2 (1990).

  30. M. B. Chang, M. J. Kushner, and M. J. Rood,Environ. Sci. Technol. 26, 777–781 (1992).

    Google Scholar 

  31. A. M. Winer, J. W. Peters, J. P. Smith, and J. N. Pitts, Jr.,Atmos. Environ. 18, 5 (1984).

    Google Scholar 

  32. J. C. Person and D. O. Ham,Radial. Phys. Chem. 31, 1 (1988).

    Google Scholar 

  33. H. Bai, P. Biswas, and T. C. Keener, Proceedings of the 84th Annual Air and Waste Management Association Meeting, Vancouver, B.C., Canada, Paper No. 91–103.24 (1991).

  34. R. Landreth, R. G. de Pena, and J. Heicklen,J. Phys. Chem. 89, 9 (1985).

    Google Scholar 

  35. R. W. Tock, K. C. Hoover, and G. J. Faust, SO2 Removal by Transformation to Solid Crystals of NH3 Complexes,AIChE Symp. Ser. 188, 75 (1979).

    Google Scholar 

  36. T. C. Keener and W. T. Davis, Demonstration of a Ca(OH)2/NH3 Based System for the Removal of SO2 on High Sulfur Coals, Ohio Coal Development Office, Columbus, Ohio, August, 1988.

  37. C. C. Shale, Ammonia Injection: A Route to Clean Stacks,Pollution Control and Energy Needs, R. M. Jimeson and R. S. Spindt, eds., Advances in Chemistry Series,127, 195–205 (1973).

  38. J. J. Carlins,Environ. Prog. 1, 2, 113–118 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, M.B., Kushner, M.J. & Rood, M.J. Removal of SO2 and the simultaneous removal of SO2 and NO from simulated flue gas streams using dielectric barrier discharge plasmas. Plasma Chem Plasma Process 12, 565–580 (1992). https://doi.org/10.1007/BF01447259

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01447259

Key words

Navigation