Skip to main content
Log in

Coupling of Naltrexone to Biodegradable Poly(α-Amino Acids)

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The narcotic antagonist naltrexone (I) was modified at the 3 and 14 hydroxyl positions and covalently coupled to a biodegradable poly(α-amino acid) backbone through a labile bond. Selective acetylation of I with acetic anhydride gave naltrexone-3-acetate (II), which was subsequently succinoylated to naltrexone-3-acetate-14-hemisuccinate (III) with succinic anhydride. The polymeric backbone chosen for initial coupling experiments was poly-N 5-(3-hydroxypropyl)-L-glutamine (PHPG). The side-chain hydroxyl functionality permitted covalent bonding of III through an ester linkage. Hydrolysis of covalently bound drug to give naltrexone or its derivatives (II and III) should be much slower than diffusion of drug through the polymer matrix. While hydrolysis of naltrexone from the polymer side chain is first order, release of drug from the matrix can be zero order due to the geometry of the device and the physical and chemical interactions between naltrexone and the polymer matrix. In vitro studies of PHPG–naltrexone conjugate in disk form did not show constant release because of the hydrophilic nature of the polymer backbone and the changing local chemical environment upon hydrolysis of drug–polymer linkages. The conjugated system was made more hydrophobic by coupling drug to copolymers of hydroxypropyl-L-glutamine (HPG) and L-leucine. Conjugates of III coupled with copoly(HPG-70/Leu-30) demonstrated a nearly constant, but slightly declining release rate of naltrexone and its derivatives for 28 days in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. Theis. In R. Willette (ed.), Res. Monogr. Ser. 4, National Institute on Drug Abuse, 1976, pp. 19–20.

  2. C. Theis. ACS Symp. Ser. 32:190 (1976).

    Google Scholar 

  3. K. R. Sidman, D. L. Arnold, W. D. Steber, L. Nelson, F. E. Granchelli, P. Strong, and S. G. Sheth. In R. Willette (ed.), Res. Monogr. Ser. 4, National Institute on Drug Abuse, 1976, pp. 33–38.

  4. D. L. Wise, A. D. Schwope, S. E. Harrigan, D. A. McCarthy, and J. F. Howes. In R. J. Kostelnick (ed.), Polymeric Delivery Systems, Gordon and Breach, New York, 1978, p. 75.

    Google Scholar 

  5. S. Yolles, J. Eldridge, R. Leafe, J. H. R. Woodland, and F. Meyer. In A. C. Tanquary and R. E. Lacey (eds.), Controlled Release of Biologically Active Agents, Plenum Press, New York, 1974.

    Google Scholar 

  6. J. Heller. J. Contr. Rel. 2:167 (1985).

    Google Scholar 

  7. H. B. Hopfenberg. In D. R. Paul and F. W. Harris (eds.), Controlled Release Polymeric Formulations, American Chemical Society, Washington, D.C., 1976.

    Google Scholar 

  8. D. E. Gregonis, J. Feijen, J. M. Anderson, and R. V. Petersen. ACS Polymer Preprints 20:612 (1979).

    Google Scholar 

  9. R. V. Petersen, J. M. Anderson, S. M. Fang, J. Feijen, D. E. Gregonis, and S. W. Kim. ACS Polymer Preprints 20:20 (1979).

    Google Scholar 

  10. N. Lotan, M. Bixon, and A. Berger. Biopolymers 8:247 (1969).

    Google Scholar 

  11. M. Miyake, S. Akito, A. Teramoto, T. Norisuye, and J. Fumita. Biopolymers 13:1173 (1974).

    Google Scholar 

  12. J. Feijen, D. Gregonis, C. Anderson, R. V. Petersen, and J. Anderson. J. Pharm. Sci. 69:871 (1980).

    Google Scholar 

  13. C. Still, M. Kahn, and A. Mitra. J. Org. Chem. 43:2923–2925 (1978).

    Google Scholar 

  14. N. Lupu-Lotan, A. Yaron, A. Berger, and M. Sela. Biopolymers 3:625 (1965).

    Google Scholar 

  15. P. H. von Dreele, N. Lotan, V. S. Ananthanarayanan, R. H. Andreatta, D. Poland, and H. A. Scheraga. Macromolecules 4:408 (1971).

    Google Scholar 

  16. P. Y. Chou, M. Wells, and G. D. Fasman. Biochemistry 11:3028–3043 (1972).

    Google Scholar 

  17. K. Itakura, N. Katagiri, C. P. Bahl, R. H. Wightman, and S. A. Narang. J. Am. Chem. Soc. 97:7327 (1975).

    Google Scholar 

  18. W. A. R. Van Heeswijk, G. J. Brinks, and J. Feijen. In E. Chiellini and P. Giusti (eds.), Polymers in Medicine, Plenum, New York, 1984, pp. 147–156.

    Google Scholar 

  19. C. Linder and J. Fishman. J. Med. Chem. 16:553 (1973).

    Google Scholar 

  20. F. I. Carrol, C. G. Moreland, G. A. Brine, and J. A. Kepler. J. Org. Chem. 41:996 (1976).

    Google Scholar 

  21. R. M. Silverstein, G. C. Baseler, and T. C. Morrill. Spectrometric Identification of Organic Compounds 4th ed., Wiley, New York, 1981, pp. 249–290.

    Google Scholar 

  22. M. Perez-Reyes and M. E. Wall. In R. Willette and G. Barnett (eds.), Res. Monogr. Ser. 28, National Institute on Drug Abuse, 1981, pp. 93–101.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negishi, N., Bennett, D.B., Cho, CS. et al. Coupling of Naltrexone to Biodegradable Poly(α-Amino Acids). Pharm Res 4, 305–310 (1987). https://doi.org/10.1023/A:1016493103302

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016493103302

Navigation