Skip to main content
Log in

Selection of a lysine-resistant CHO-K1 mutant with reduced amino acid transport through multiple systems

  • Published:
Somatic Cell and Molecular Genetics

Abstract

High levels ofl-lysine were used to select for resistant variants of Chinese hamster ovary (CHO-K1) cells. Surviving colonies were screened for altered lysine transport and two with reduced uptake were picked. Clone CH-Kr, derived from the more severely affected colony, was analyzed in detail. In starved cells theV max of lysine uptake in CH-Kr was half that of CHO whileK m was unaltered. The intracellular pool of lysine, a substrate of cationic amino acid transport system y+, was significantly lower in CH-Kr. However, transport and pools of other amino acids, which are not substrates of y+, were also reduced in CH-Kr, as was the internal sodium concentration, while hexose import was increased. It appears that the mutation in CH-Kr is pleiotropic, affecting some general aspects of amino acid transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Ash, J.F., Igo, R.P., Jr., Morgan, M., and Grey, A. (1993).Somat. Cell Mol. Genet. 19231–243.

    Google Scholar 

  2. White, M.F. (1985).Biochim. Biophys. Acta 822355–374.

    Google Scholar 

  3. Christensen, H.N. (1990).Physiol. Rev. 7043–77.

    Google Scholar 

  4. Rotoli, B.M., Bussolati, O., Dall'Asta, V., and Gazzola, G.C. (1989).Biochem. Biophys. Res. Commun. 1641093–1098.

    Google Scholar 

  5. Albritton, L.M., Tseng, L., Scadden, D., and Cunningham, J.M. (1989).Cell 57659–666.

    Google Scholar 

  6. Kim, J.W., Closs, E.I., Albritton, L.M., and Cunningham, J.M. (1991).Nature 352725–728.

    Google Scholar 

  7. Wang, H., Kavanaugh, M.P., North, R.A., and Kabat, D. (1991).Nature 352729–731.

    Google Scholar 

  8. Yoshimoto, T., Yoshimoto, E., and Meruelo, D. (1991).Virology 18510–17.

    Google Scholar 

  9. Albritton, L.M., Bowcock, A.M., Eddy, R.L., Morton, C.C., Tseng, L., Farrer, L.A., Cavalli-Sforza, L.L., Shows, T.B., and Cunningham, J.M. (1992).Genomics 12430–434.

    Google Scholar 

  10. Englesberg, E., Bass, R., and Heiser, W. (1976).Somat. Cell Genet. 2411–428.

    Google Scholar 

  11. van der Engh, G., Trask, B., Cram, S., and Bartholdi, M. (1984).Cytometry 5108–117.

    Google Scholar 

  12. Hamilton, W.G., and Ham, R.G. (1977).In Vitro 13537–547.

    Google Scholar 

  13. Dantzig, A.H., Fairgrieve, M., Slayman, C.W., and Adelberg, E.A. (1984).Somat. Cell Mol. Genet. 10113–121.

    Google Scholar 

  14. Raetz, C.R.H., Wermuth, M.M., McIntyre, T.M., Esko, J.D., and Wing, D.C. (1982).Proc. Natl. Acad. Sci. U.S.A. 793223–3227.

    Google Scholar 

  15. Pauw, P.G., and Ash, J.F. (1987).J. Cell. Physiol. 130199–206.

    Google Scholar 

  16. Gazzola, G.C., Dall'Asta, V., Franchi-Gazzola, R., and White, M.F. (1981).Anal. Biochem. 115368–374.

    Google Scholar 

  17. Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., and Klenk, D.C. (1985).Anal. Biochem. 15076–85.

    Google Scholar 

  18. Whitfield, C.D., Hupe, L.M., Nugent, C., Urbani, K.E., and Whitfield, H.J. (1982).J. Biol. Chem. 2574902–4906.

    Google Scholar 

  19. Marquardt, D.W. (1963).J. Soc. Ind. Appl. Math. 11431–441.

    Google Scholar 

  20. Shotwell, M.A., Jayme, D.W., Kilberg, M.S., and Oxender, D.L. (1981).J. Biol. Chem. 2565422–5427.

    Google Scholar 

  21. Vasquez, B., Ishibashi, F., and Howard, B.V. (1982).In Vitro 18643–649.

    Google Scholar 

  22. Pauw, P.G., Sheck, R.N., and Ash, J.F. (1989).Mol. Cell. Biol. 9116–123.

    Google Scholar 

  23. Bass, R., Hedegaard, H.B., Dillehay, L., Moffett, J., and Englesberg, E. (1981).J. Biol. Chem. 25610259–10266.

    Google Scholar 

  24. Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T. (1988).Numerical Recipes in C: The Art of Scientific Computing (Cambridge University Press, New York), pp. 521–523.

    Google Scholar 

  25. Shapiro, S.S., and Wilk, M.B. (1965).Biometrika 52591–611.

    Google Scholar 

  26. Royston, J.P. (1982).Appl. Stat. 31176–180.

    Google Scholar 

  27. Ash, J.F., and Igo, R.P., Jr. (1993).Biochim. Biophys. Acta 1149109–118.

    Google Scholar 

  28. Stein, W.D. (1986).Transport and Diffusion across Cell Membranes (Academic Press, San Diego), pp. 231–361.

    Google Scholar 

  29. Guidotti, G., Borghetti, A.F., and Gazzola, G.C. (1978).Biochim. Biophys. Acta 515329–366.

    Google Scholar 

  30. Shotwell, M.A., Kilberg, M.S., and Oxender, D.L. (1983).Biochim. Biophys. Acta 737267–284.

    Google Scholar 

  31. Saier, M.H., Jr., Daniels, G.A., Boerner, P., and Lin, J. (1988).J. Membr. Biol. 1041–20.

    Google Scholar 

  32. Graff, J.C., Wohlhueter, R.M., and Plagemann, P.G.W. (1978).J. Cell. Physiol. 96171–188.

    Google Scholar 

  33. Franchi, A., Silvestre, P., and Pouysségur, J. (1978).Biochem. Biophys. Res. Commun. 851526–1534.

    Google Scholar 

  34. Franchi-Gazzola, R., Gazzola, G.C., Ronchi, P., Saibene, V., and Guidotti, G.G. (1973).Biochim. Biophys. Acta 291545–556.

    Google Scholar 

  35. Moffett, J., and Englesberg, E. (1984).Mol. Cell. Biol. 4799–808.

    Google Scholar 

  36. Moffett, J., and Englesberg, E. (1986).J. Cell. Physiol. 126421–429.

    Google Scholar 

  37. Wells, R.G., and Hediger, M.A. (1992).Proc. Natl. Acad. Sci. U.S.A. 895596–5600.

    Google Scholar 

  38. Bertran, J., Magagnin, S., Werner, A., Markovich, D., Biber, J., Testar, X., Zorzano, A., Kühn, L.C., Palacin, M., and Murer, H. (1992).Proc. Natl. Acad. Sci. U.S.A. 895606–5610.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeBusk, W.E., Ash, J.F. Selection of a lysine-resistant CHO-K1 mutant with reduced amino acid transport through multiple systems. Somat Cell Mol Genet 19, 331–345 (1993). https://doi.org/10.1007/BF01232746

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01232746

Keywords

Navigation