Skip to main content
Log in

Cluster Quantum Chemical Study of Triaminotoluene Interaction with a Model Clay Surface

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

This paper presents the results of an ab initio cluster quantum chemical study at the HF/6-31G level for the triaminotoluene (TAT) molecule interaction with a model clay surface, in particular, a kaolinite-type clay mineral. The latter is characterized by a layer structure that contains three different structure units corresponding to alumina, silica, and an intersection of alumina-silica. According to the obtained results, the physical adsorption of TAT took place both on alumina and silica structure units. In going from silica to alumina-silica units, the two-center adsorption of TAT will result in strong adsorption via formation of a TATH+ species stabilized by two strong H bonds. Different channels of interactions of TAT with kaolinite-type clay surfaces (i.e., one-, two-, and three-center adsorption of TAT, an aromatic six-member ring opening of TAT) and its destruction via breaking the methyl-aromatic or amino-aromatic ring bonds are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Karaborni, S.; Smit, B.; Heidug, W.; Urai, J.; van Oort, E. Science 1996, 271, 1102.

    Google Scholar 

  2. Newman, A. C. D. In: Chemistry and Clays and Clay Surfaces; A. C. D. Newman (Ed.); Wiley: New York, 1987; (b) Crystal Structure of Clay Minerals and Their X-Ray Identification; G. W. Brindley and G. Brown (Eds.); Mineralogical Society: London, 1980.

    Google Scholar 

  3. Hüfner, S. Photoelectron Spectroscopy; Springer Series in Solid-State Science 82; Springer-Verlag: Berlin-Heidelberg, 1995.

    Google Scholar 

  4. Freund, H.-J.; Umbach, E. Adsorption on Ordered Surfaces of Ionic Solids and Thin Films; Springer Series in Surface Science 33; Springer-Verlag: Berlin-Heidelberg, 1993.

    Google Scholar 

  5. Sauer, J.; Ugliengo, P.; Garrone, E.; Saunders, V. R. Chem. Rev. 1994, 94, 2095.

    Google Scholar 

  6. Zhidomirov, G. M.; Kazansky, V. B. Adv. Catal. 1986, 34, 131.

    Google Scholar 

  7. Pelmenschikov, A. G.; Morosi, G.; Gamba, A. J. Phys. Chem. 1997, 101, 1178.

    Google Scholar 

  8. Sierka, M.; Sauer, J. Faraday Discuss, 1997, 106, 41.

    Google Scholar 

  9. Weiss, C. A., Jr.; Zhanpeisov, N. U.; Larson, S. L.; Gorb, L. G.; Adams, J. W.; Leszczynski, J.; Leszczynska, D. Proc. 5th Conf. Current Trends in Computational Chemistry; Vicksburg, MS, 1996, p. 155.

  10. Gorb, L. G.; Weiss, C. A., Jr.; Ilchenko, N. N.; Larson, S. L.; Leszczynski, J.; Adams, J.; Leszczynska, D. J. Mol. Struct. (Theochem.) 1998, 425, 129; (b) Gorb, L. G.; Weiss, C. A., Jr.; Ilchenko, N. N.; Larson, S. L.; Leszczynski, J.; Adams, J.; Leszczynska, D. Proc. 5th Conf. Current Trends in Computational Chemistry; Vicksburg, MS, 1996, p. 43.

    Google Scholar 

  11. Frish, M. J.; Trucks, G. W.; Head-Gordon, M.; Gill, P. M. V.; Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Rob, M. A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzales, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A. GAUSSIAN 92; Gaussian Inc.: Pittsburgh, PA, 1992; (b) Frish, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. GAUSSIAN 94, Revision D.3; Gaussian Inc.: Pittsburgh, PA, 1995.

    Google Scholar 

  12. Zhanpeisov, N. U.; Zhidomirov, G. M. Proc. Post-Conf Satellite Meeting on Quantum Chemical Aspects of Heter. Catalysis, Berlin, Germany, 1994, p. 10.

  13. Zhanpeisov, N. U.; Matsuoka, M.; Yamashita, H.; Anpo, M. J. Phys. Chem. B 1998, 102, 6915.

    Google Scholar 

  14. Wittbrodt, J. M.; Hase, W. L.; Schlegel, H. B. J. Phys. Chem. B 1998, 102, 6539.

    Google Scholar 

  15. Ugliengo, P.; Saunders, V. R.; Garrone, E. J. Phys. Chem. 1990, 94, 2260.

    Google Scholar 

  16. Zamaraev, K. I.; Zhidomirov, G. M. Proc. 5th Intern. Symp. Rel. Homogen. Heterogen. Catal.; Ermakov, Yu. I.; Likholobov, V. A. (Eds.); VNU Sci. Press, Utrecht, Netherlands, 1986.

    Google Scholar 

  17. Teunissen, E. H.; van Duijneveldt, F. B.; van Santen, R. A. J. Phys. Chem. 1992, 96, 366; (b) Teunissen, E. H.; van Santen, R. A.; Jansen, A. P. J.; van Duijneveldt, F. B. J. Phys. Chem. 1993, 97, 203.

    Google Scholar 

  18. Paukshtis, E. A.; Pankratiev, Yu. D.; Pelmenschikov, A. G.; Burgina, E. B.; Turkov, V. M.; Yurchenko, E. N.; Zhidomirov, G. M. Kinet. Katal. 1986, 27, 1440 (in Russian).

    Google Scholar 

  19. Pelmenschikov, A. G.; Paukshtis, E. A.; Zhanpeisov, N. U.; Pavlov, V. I.; Zhidomirov, G. M. React. Kinet. Catal. Lett. 1987, 33, 423; (b) Zhanpeisov, N. U.; Pelmenschikov, A. G.; Paukshtis, E. A.; Zhidomirov, G. M. Kinet. Katal. 1987, 28, 194 (in Russian, translated by Plenum).

    Google Scholar 

  20. Zhanpeisov, N. U.; Pelmenschikov, A. G.; Zhidomirov, G. M. Zh.Strukt. Khim. 1987, 28, 3 (in Russian, translated by Plenum).

    Google Scholar 

  21. Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Leszczynski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhanpeisov, N.U., Adams, J.W., Larson, S.L. et al. Cluster Quantum Chemical Study of Triaminotoluene Interaction with a Model Clay Surface. Structural Chemistry 10, 285–294 (1999). https://doi.org/10.1023/A:1022047018596

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022047018596

Navigation