Skip to main content
Log in

Metal-betaine interactions. Part 17: A study of intradimer Cu · · · Cu distance variation in copper(II) betaine complexes containing [Cu2 (carboxylato-O,O′)4L2]n+ species

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Four copper(II) complexes of betaines, [Cu2(BET)4Cl2][Cu(BET)2Cl2]Cl2 (2), [Cu2(pyBET)4Cl2]3[CuCl4]2Cl2 (3), [Cu, (pyBET)4 (H2O)2] (NO3)4 · 2H2O (4), and [Cu2(ppBET)4(H2O)2](ClO4)4 · 4H2O (5), (BET = Me3N+CH2COO; pyBET = C5H5N+CH2COO; ppBET=C5H5N+CH2CH2COO), have been prepared and characterized by X-ray crystallography. These complexes all contain dimeric [Cu2 (carboxylato-O,O′)4L2] structures [basal Cu-O=1.955(4) ∼ 1.991(2), Cu ⋯ Cu=2.602(1) ∼ 2.759(1) Å] with the apical ligand L=Cl in (2) and (3) [Cu-Cl=2.415(1) ∼ 2.436(3) Å] and L = H2O in (4) and (5) [Cu-OH2=2.158(4) ∼ 2.192(3) Å]; also present are a discrete [Cu(BET)2Cl2] molecule with a compressed tetrahedral CuO2Cl2 chromophore involving two unidentate carboxylate ligands [Cu-O=1.916(2), Cu-Cl=2.254(1) Å] in (2), and a discrete C3v [CuCl4]2− anion in (3). Generally the intradimer Cu ⋯ Cu distance may be correlated to the electronic repulsion of the metal-ligand bonds in the CuO4L chromophore, as well as the steric interaction between the carboxylate moieties and the apical ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van Niekerk, J. N.; Schoening, F. R. L.Acta Crystallogr. 1953, 6, 227;

    Google Scholar 

  2. Meester, P.; Fletcher, S. R.; Skapski, A. G.J. Chem. Soc, Dalton Trans. 1973, 2575.

  3. Doedens, R.J. Prog. Inorg. Chem. 1976,21, 209.

    Google Scholar 

  4. Carerick, J.; Thornton, P.Adv. Inorg. Chem. 1977,21, 291.

    Google Scholar 

  5. Melnik, M.Coord. Chem. Rev. 1982,42, 259.

    Google Scholar 

  6. Steward, O. W.; McAfee, R. C.; Chang, S.-C; Pisker, S. R.; Schreiber, W. J.; Jurry, C. F.; Taylor, C. E.; Pletcher, J. F.; Chen, C.-S.Inorg. Chem. 1986,25, 771.

    Google Scholar 

  7. Porter, L. C.; Dickman, M. H.; Dordens, R.J. Inorg. Chem. 1986,25, 678.

    Google Scholar 

  8. Goodgame, D. M. L.; Hill, N. J.; Marsham, D. F.; Skapski, A. C.Chem. Commun. 1969, 629.

  9. Borel, M. M.; Leclaire, A.Acta Crystallogr., Sect. B,1976,32, 1275.

    Google Scholar 

  10. Moreland, J. A.; Doedens, R.J. J. Am. Chem. Soc. 1975,97, 508.

    Google Scholar 

  11. Figgis, B. N.; Martin, R. L.J. Chem. Soc. 1956, 3837.

  12. Forster, L. S.; Ballhausen, C.J. Acta Chem. Scand. 1962,16, 1385;

    Google Scholar 

  13. Boudreaux, E. A.Inorg. Chem. 1964,3, 506.

    Google Scholar 

  14. Kato, M.Coord. Chem. Rev. 1988, 92, 45;

    Google Scholar 

  15. Asakawa, T.; Inoue, M.; Hara, K.; Kubo, M.Bull. Chem. Soc. Jpn. 1972,45, 1054;

    Google Scholar 

  16. Zelonka, R. A.; Baird, M. C.;Inorg. Chem. 1972,11, 134;

    Google Scholar 

  17. Beddoes, R. L.; Connor, J. A.; Dubowski, D.; Jones, A. C; Mills O. S.; Price, R.J. Chem. Soc, Dalton Trans. 1979, 781.

  18. Hay, P. J.; Thibeault, J. C.; Hoffman, R.J. Am. Chem. Soc. 1975,97, 4884;

    Google Scholar 

  19. Harcourt, R. D.; Skrezenek, F. L.; Maclagan, R. G. A. R.J. Am. Chem. Soc. 1986,108, 5403.

    Google Scholar 

  20. Rao, V. M.; Sathyanarayana, D. N.; Manohar, H.J. Chem. Soc., Dalton Trans. 1983, 2167.

  21. Chen, X.-M.; Mak, T. C. W.Acta Crystallogr., Sect. C. 1992,48, 1211.

    Google Scholar 

  22. Chen, X.-M.; Mak, T. C. W.J. Cryst. Spectrosc. Res. 1991,21, 27;

    Google Scholar 

  23. J. Chem. Soc, Dalton Trans. 1991, 1219;

  24. Polyhedron 1991,10, 1723.

  25. Chen, X.-M.; Mak, T. C. W.Inorg. Chem. Acta. 1991,182, 139;

    Google Scholar 

  26. J. Chem. Soc., Dalton Trans. 1991, 3253;

  27. Struct. Chem. 1992,3, 369;

  28. Mak, T. C. W.; Chen, X.-M.Aust. J. Chem. 1991,44, 639;

    Google Scholar 

  29. Huang, W.-Y.; Lü, L.; Chen, X.-M.; Mak, T. C. W.Polyhedron 1991,10, 2687.

    Google Scholar 

  30. Chen, X.-M.; Mak, T. C. W.;J. Chem. Soc., Dalton Trans. 1992, 1585.

  31. Sparks, R. A. InCrystallographic Computing Techniques; Ahmed, F. R., Ed.; Munksqaard: Copenhagen, 1976; pp. 452–467.

    Google Scholar 

  32. Diamond, R.Acta Crystallogr., Sect. A. 1969, 27, 43.

    Google Scholar 

  33. Kopfmann, G.; Huber, R.Acta Crystallogr., Sect. A. 1968,24, 348.

    Google Scholar 

  34. Sheldrick, G. M. inComputational Crystallography; Sayre, D., Ed.; Oxford University Press: New York, 1982; pp. 506–516;

    Google Scholar 

  35. Sheldrick, G. M. InCrystallographic Computing. 3: Data Collection, Structure Determination, Proteins, and Databases; Sheldrick, G. M.; Krüger, C; Goddard, R., Eds.; Oxford University Press: New York, 1985; pp. 175–189.

    Google Scholar 

  36. International Tables for X-ray Crystallography, Vol. IV; Ibers, J. A.; Hamilton, W. C., Eds.; Kynoch Press: Birmingham, U.K., 1974; pp 55, 99, 149. (Now distributed by Kluwer Academic Publishers: Dordrecht, The Netherlands).

    Google Scholar 

  37. Hone, H.; Husebye, S.; Kato, M.; Meyers, E. A.; Muto, Y.; Tokii, T.; Zingaro, R. A.Acta Chem. Scand. A 1986,40, 579.

    Google Scholar 

  38. Willett, R. D.Coord. Chem. Rev. 1991,109, 181;

    Google Scholar 

  39. Smith, D. W.Coord. Chem. Rev. 1976,21, 93;

    Google Scholar 

  40. Halvrorson, K. H.; Patterson, C; Willet, R. D.Acta Crystatlogr., Sect. B. 1990,46, 508.

    Google Scholar 

  41. Hathaway, B. J. InComprehensive Coordination Chemistry; Wilkinson, G.; Gillard, R. D.; McClerverty, J.A., Eds.; Pergamon Press: Oxford, 1987; Vol. 5, Chap. 54, p 606;

    Google Scholar 

  42. Mehrotra, R. C.; Bohra, R.Metal Carboxylates; Academic Press: New York, 1983; Chap. 4, pp 286–295.

    Google Scholar 

  43. Bertrand, J. A.; Kalyanranman, A. R.Inorg. Chim. Acta 1971,5, 341.

    Google Scholar 

  44. Clay, R. M.; Murray-Rust, P.; Murray-Rust, J.J. Chem. Soc.,Dalton Trans. 1973, 595.

  45. Harrison, W.; Rettig, S.; Trotter, J.J. Chem. Soc. A 1972, 1852.

  46. Simonov, Yu. A.; Ivanov, V. I.; Ablov, A. V.; Milkova, L. N.Zh. Struct. Khim. 1976,17, 516;

    Google Scholar 

  47. Tarkahova, T. N.; Ablov, A. V.Kristallografiya 1969,13, 611.

    Google Scholar 

  48. Morosin, B.; Hughes, R. C.; Soos, Z. G.Acta Crystallogr., Sect. B 1975,31, 762.

    Google Scholar 

  49. Dovey, G.; Stephens, F. S.J. Chem. Soc. A 1970, 1626;

  50. Kettle, S. F. A.; Pioli, A. J. P.J. Chem. Soc. A. 1968, 1242.

  51. Simonov, Yu. A.; Milkova, L. N.; Ablov, A. V.; Malkinovskii, T. I.Dokl. Akad. Nauk. USSR 1976,229, 1134.

    Google Scholar 

  52. Ivanov, V. I.; Simonov, Yu. A.; Ablov, A. V.; Milkova, L. N.Kristallografiya 1974,19, 1286;

    Google Scholar 

  53. Yablokov, Yu. V.; Mosina, L. N.; Simonov, Yu. A.; Milkova, L. N.; Ablov, A. V.; Ivanov, V. I.Zh. Struct. Khim 1978,19, 42.

    Google Scholar 

  54. Moreland, J. A.; Doedens, R.J. Inorg. Chem. 1978,3, 674.

    Google Scholar 

  55. Pauling, L.The Nature of Chemical Bond, 3rd. ed., Cornell University Press: Ithaca, NY, 1960; p 260

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, XM., Mak, T.C.W. Metal-betaine interactions. Part 17: A study of intradimer Cu · · · Cu distance variation in copper(II) betaine complexes containing [Cu2 (carboxylato-O,O′)4L2]n+ species. Struct Chem 4, 247–259 (1993). https://doi.org/10.1007/BF00673699

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00673699

Key words

Navigation