Skip to main content
Log in

Multivariate analysis with linearizable regressions

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

We study the class of multivariate distributions in which all bivariate regressions can be linearized by separate transformation of each of the variables. This class seems more realistic than the multivariate normal or the elliptical distributions, and at the same time its study allows us to combine the results from multivariate analysis with optimal scaling and classical multivariate analysis. In particular a two-stage procedure which first scales the variables optimally, and then fits a simultaneous equations model, is studied in detail and is shown to have some desirable properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, T. W. (1958).An introduction to multivariate statistical analysis. New York, Wiley.

    Google Scholar 

  • Bakker, B. F. M., Dronkers, J., & Ganzeboom, H. B. G. (1984).Social stratification and mobility in The Netherlands. Amsterdam: SISWO.

    Google Scholar 

  • Bekker, P. & de Leeuw, J. (1988). Relations between various forms of nonlinear principal component analysis. In J. van Rijckevorsel & J. de Leeuw,Progress in component and correspondence analysis. New York: Wiley.

    Google Scholar 

  • Bentler, P. M. (1983). Some contributions to efficient statistics in structural models: specification and estimation of moment structures.Psychometrika, 48, 493–518.

    Google Scholar 

  • Besse, P., & Ramsay, J. O. (1986). Principal components analysis of sampled functions.Psychometrika, 51, 285–311.

    Google Scholar 

  • Breiman, L., & Friedman, J. H. (1985). Estimating optimal transformations for multiple regression and correlation.Journal of the American Statistical Association, 80, 580–598.

    Google Scholar 

  • de Leeuw, J. (1968).Canonical discriminant analysis of relational data (Report RN 007-68). Leiden: University of Leiden, Department of Data Theory.

    Google Scholar 

  • de Leeuw, J. (1982). Nonlinear principal component analysis. In H. Caussinus (Ed.),COMPSTAT 1982 (pp. 77–86). Wien: Physika Verlag.

    Google Scholar 

  • de Leeuw, J. (1983a). On the prehistory of correspondence analysis.Statistica Neerlandica, 37, 161–164.

    Google Scholar 

  • de Leeuw, J. (1983b). Models and methods for the analysis of correlation coefficients.Journal of Econometrics, 22, 113–137.

    Google Scholar 

  • de Leeuw, J. (1984a). Models of data.Kwantitatieve Methoden, 5, 17–30.

    Google Scholar 

  • de Leeuw, J. (1984b). The Gift-system of nonlinear multivariate analysis. In E. Diday (Ed.),Data analysis and informatics II (pp. 415–424). Amsterdam: North Holland.

    Google Scholar 

  • de Leeuw, J. (1984c). Discrete normal linear regression models. In T. K. Dijkstra (Ed.),Misspecification analysis (pp. 56–71). Berlin: Spring Verlag.

    Google Scholar 

  • de Leeuw, J. (1986). Regression with optimal scaling of the dependent variable. In O. Bunke (Ed.),Proceedings of the 7th International Summer School on Problems of Model Choice and Parameter Estimation in Regression Analysis (Report No. 84, pp. 99–111). Berlin, GDR: Humboldt University, Department of Mathematics.

    Google Scholar 

  • de Leeuw, J. (1988a). Model selection in multinomial experiments. In T. K. Dijkstra (Ed.),On model uncertainty and its statistical implications (pp. 118–138). Berlin: Springer Verlag.

    Google Scholar 

  • de Leeuw, J. (1988b). Models and techniques.Statistica Neerlandica, 42, 91–98.

    Google Scholar 

  • de Leeuw, J. (in press). Multivariate analysis with optimal scaling. In S. Das Gupta (Ed.),Progress in multivariate analysis. Calcutta: Indian Statistical Institute.

  • de Leeuw, J. & van der Heijden, P. G. M. (1988). Correspondence analysis of incomplete contingency tables,Psychometrika, 53, 223–233.

    Google Scholar 

  • de Leeuw, J. & van der Heijden, P. G. M. (in press). The analysis of time budgets with a latent time budget model. In E. Diday (Eds.),Data analysis and informatics V. Amsterdam: North Holland.

  • de Leeuw, J. &. van Rijckevorsel, J. L. A. (1988). Beyond homogeneity analysis. In J. van Rijckevorsel & J. de Leeuw,Progress in component and correspondence analysis (pp. 55–81). New York: Wiley.

    Google Scholar 

  • Dijkstra, T. (1983). Some comments on maximum likelihood and partial least squares methods.Journal of Econometrics, 22, 67–90.

    Google Scholar 

  • Freedman, D. A. (1987). As others see us: A case study in path analysis.Journal of Educational Statistics, 12, 101–129.

    Google Scholar 

  • Gifi, A. (1980). Data analyse en statistiek [Data analysis and statistics].Bulletin VVS, 13(5), 10–16.

    Google Scholar 

  • Gifi, A. (1988).Nonlinear multivariate analysis. Leiden, DSWO-Press.

    Google Scholar 

  • Gilula, Z., & Haberman, S. J. (1986). Canonical analysis of contingency tables by maximum likelihood.Journal of the American Statistical Association, 81, 780–788.

    Google Scholar 

  • Goodman, L. A. (1986). Some useful extensions of the usual correspondence analysis approach and the usual loglinear models approach in the analysis of contingency tables.International Statistical Review, 54, 243–309.

    Google Scholar 

  • Greenacre, M. J. (1984).Theory and applications of correspondence analysis. New York: Academic Press.

    Google Scholar 

  • Guttman, L. (1955). The determinacy of factor score matrices with implications for five other basic problems of common-factor theory.British Journal of Statistical Psychology, 8, 65–82.

    Google Scholar 

  • Guttman, L. (1959). Metricizing rank-ordered or unordered data for a linear factor analysis.Sankhya, 21, 257–268.

    Google Scholar 

  • Guttman, L. (1971). Measurement as structural theory.Psychometrika, 36, 329–347.

    Google Scholar 

  • Hirschfeld, H. O. (1935). A connection between correlation and contingency.Proceedings of the Cambridge Philosophical Society, 31, 520–524.

    Google Scholar 

  • Isserlis, L. (1916). On certain probable errors and correlation coefficients of multiple frequency distributions with skew regression.Biometrika, 11, 185–190.

    Google Scholar 

  • Kiiveri, H. T. (1987). An incomplete data approach to the analysis of covariance structures.Psychometrika, 52, 539–554.

    Google Scholar 

  • Koyak, R. A. (1987). On measuring internal dependence in a set of random variables.Annals of Statistics, 15, 1215–1229.

    Google Scholar 

  • Lebart, L., Morineau, A., & Warwick, K. M. (1984).Multivariate descriptive statistical analysis. New York: Wiley.

    Google Scholar 

  • Little, R. J. A., & Rubin, D. B. (1983). On jointly estimating parameters and missing data by maximizing the complete-data likelihood.American Statistician, 37, 218–220.

    Google Scholar 

  • Little, R. J. A., & Rubin, D. B. (1987).Statistical analysis with missing data. New York: Wiley.

    Google Scholar 

  • Molenaar, I. (1988). Formal statistics and informal data analysis, or why laziness should be discouraged.Statistica Neerlandica, 83–90.

  • Mooijaart, A., Meijerink, F., & de Leeuw, J. (1988). Nonlinear path models. Unpublished manuscript.

  • Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators.Psychometrika, 49, 115–132.

    Google Scholar 

  • Pearson, K. (1906). On certain points connected with scale order in the case of a correlation of two characters which for some arrangement give a linear regression line.Biometrika, 5, 176–178.

    Google Scholar 

  • Peschar, J. L. (1973).School, milieu, beroep [School, environment, profession]. Groningen, The Netherlands: Wolters.

    Google Scholar 

  • Steiger, J. H., & Browne, M. W. (1984). The comparison of independent correlations between optimal linear composites.Psychometrika, 49, 11–24.

    Google Scholar 

  • Takane, Y., Young, F. W., & de Leeuw, J. (1979). Nonmetric common factor analysis: An alternating least squares method with optimal scaling features.Behaviormetrika, 6, 45–56.

    Google Scholar 

  • Tenenhaus, M., & Young, F. W. (1985). An analysis and synthesis of multiple correspondence analysis, optimal scaling, dual scaling, homogeneity analysis and other methods for quantifying categorical multivariate data.Psychometrika, 50, 91–119.

    Google Scholar 

  • van der Burg, E., de Leeuw, J., & Verdegaal, R. (1988). Homogeneity analysis withk sets of variables,Psychometrika, 53, 177–197.

    Google Scholar 

  • van der Heijden, P. G. M., & de Leeuw, J. (1985). Correspondence analysis used complementary to loglinear analysis.Psychometrika, 50, 429–447.

    Google Scholar 

  • van Praag, B. M. S., de Leeuw, J., & Kloek, T. (1986). The population sample decomposition approach to multivariate estimation methods.Applied Stochastic Models and Data Analysis, 2, 99–120.

    Google Scholar 

  • van Rijckevorsel, J. L. A. (1987).The application of horseshoes and fuzzy coding in multiple correspondence analysis. Leiden: DSWO-Press.

    Google Scholar 

  • van Rijckevorsel, J. L. A., & de Leeuw, J. (Eds.). (1988).Progress in component and correspondence analysis. New York: Wiley.

    Google Scholar 

  • Winsberg, S., & Ramsay, J. O. (1980). Monotonic transformations to additivity using splines.Biometrika, 67, 669–674.

    Google Scholar 

  • Young, F. W. (1981). Quantitative analysis of qualitative data.Psychometrika, 46, 357–388.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Leeuw, J. Multivariate analysis with linearizable regressions. Psychometrika 53, 437–454 (1988). https://doi.org/10.1007/BF02294399

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02294399

Key words

Navigation