Skip to main content
Log in

Multiply connected Fermi sphere and fermion condensation

  • Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We examine the structure of the ground state of a homogeneous Fermi liquid beyond the instability point of the Fermi-like quasiparticle momentum distribution in the effective-functional method with a strong repulsive effective interaction. A numerical study of the initial stage of rearrangement of the ground state, based on a simple effective functional, showed that there exists a temperature T 0, above which the behavior of the system is the same as in the theory of fermion condensation, and for T<T 0 the scenario of rearrangement of the ground state is different. At low temperatures an intermediate structure arises, with a multiply connected quasiparticle momentum distribution. The transition of this structure with growth of the coupling constant to a state with a fermion condensate is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau, Zh. Éksp. Teor. Fiz. 30, 1058 (1956) [Sov. Phys. JETP 3, 920 (1956)]; ibid. 35, 97 (1959) [Sov. Phys. JETP 8, 70 (1959)].

    Google Scholar 

  2. J. M. Luttinger, J. Math. Phys. 4, 1154 (1963); D. C. Mattis and E. H. Lieb, J. Math. Phys. 6, 304 (1965).

    Article  MathSciNet  Google Scholar 

  3. F. D. M. Haldane, J. Phys. C 14, 2585 (1981).

    Article  ADS  Google Scholar 

  4. P. W. Anderson, Phys. Rev. Lett. 64, 1839 (1990); 65, 2306 (1990).

    ADS  Google Scholar 

  5. C. M. Varma, P. B. Littlewood, S. Schmitt-Rink et al., Phys. Rev. Lett. 63, 1996 (1989).

    Article  ADS  Google Scholar 

  6. Z.-X. Shen and D. S. Dessau, Phys. Rep. 253, 1 (1955).

    ADS  Google Scholar 

  7. T. Yokoya, A. Chainani, T. Takahashi et al., Phys. Rev. Lett. 76, 3009 (1996).

    Article  ADS  Google Scholar 

  8. D. H. Lu, M. Schmidt, T. R. Cummins et al., Phys. Rev. Lett. 76, 4845 (1996).

    ADS  Google Scholar 

  9. M. de Llano and J. P. Vary, Phys. Rev. C 19, 1083 (1979).

    ADS  Google Scholar 

  10. M. de Llano, A. Plastino, and J. G. Zabolitsky, Phys. Rev. C 20, 2418 (1979).

    ADS  Google Scholar 

  11. V. A. Khodel’, V. R. Shaginyan, JETP Lett. 51, 626 (1990).

    Google Scholar 

  12. V. A. Khodel, V. R. Shaginyan, and V. V. Khodel, Phys. Rep. 249, 1 (1994).

    Article  ADS  Google Scholar 

  13. V. A. Khodel, J. W. Clark, and V. R. Shaginyan, Solid State Commun. 96, 353 (1995).

    Article  Google Scholar 

  14. V. A. Khodel’, V. R. Shaginyan, and P. Shuk, JETP Lett. 63, 752 (1996).

    ADS  Google Scholar 

  15. M. V. Zverev, V. A. Khodel’, V. R. Shaginyan, and M. Baldo, JETP Lett. 65, 863 (1997).

    Article  ADS  Google Scholar 

  16. P. Nozières, J. Phys. I 2, 443 (1992).

    Article  Google Scholar 

  17. A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (Prentice-Hall, Englewood Cliffs, N. J., 1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 114, 2078–2088 (December 1998)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zverev, M.V., Baldo, M. Multiply connected Fermi sphere and fermion condensation. J. Exp. Theor. Phys. 87, 1129–1135 (1998). https://doi.org/10.1134/1.558604

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558604

Keywords

Navigation