Skip to main content
Log in

Shock wave structure in simple liquids

  • Condensed Matter
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

The shock wave structure in a liquid is studied by a molecular dynamics simulation method. The interaction between atoms is described by the Lennard-Jones (6–12) potential. In contrast to earlier works, the simulation is performed in a reference frame tied to the shock wave front. This approach reduces non-physical fluctuations and makes it possible to calculate the distribution functions of the kinetic and potential energy for several cross sections within the shock layer. The profiles of flow variables and their fluctuations are found. The surface tension connected with pressure anisotropy within the shock front is calculated. It is shown that the main contribution to the surface tension coefficient comes from the mean virial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Muntz and L. M. Harnett, Phys. Fluids 12, 2027 (1969).

    Article  Google Scholar 

  2. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, Oxford, 1959.

    Google Scholar 

  3. H. W. Liepman, R. Narashima, and M. T. Chahine, Phys. Fluids 5, 1313 (1962).

    Google Scholar 

  4. D. Gilbarg and D. Paolucci, J. Ratl. Mech. Anal. 2, 617 (1953).

    MathSciNet  Google Scholar 

  5. C. Muckenfuss, Phys. Fluids 5, 1325 (1962).

    Google Scholar 

  6. I. E. Tamm, Tr. Fiz. Inst. Akad. Nauk SSSR 29, 317 (1965).

    Google Scholar 

  7. H. M. Mott-Smith, Phys. Rev. 82, 885 (1951).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. W. Fiszdon, R. Herczynski, and Z. Walenta, in Rarefied Gas Dynamics, Eds. M. Becker and M. Fiebig, Porz-Wahn, DFVLR Press, 1974, p. B23.

  9. G. A. Bird, Phys. Fluids 13, 1172 (1979).

    Google Scholar 

  10. W. G. Hoover, Phys. Rev. Lett. 42, 1531 (1979).

    Article  ADS  Google Scholar 

  11. B. L. Holian, W. G. Hoover, B. Moran, and G. K. Straub, Phys. Rev. A 22, 2798 (1980).

    Article  ADS  Google Scholar 

  12. E. Salomons and M. Marechal, Phys. Rev. Lett. 69, 269 (1992).

    Article  ADS  Google Scholar 

  13. M. Koshi, T. Saito, H. Nagoya et al., Kayaku Gakkaishi 55, 229 (1994).

    Google Scholar 

  14. V. V. Zhakhovskii and S. I. Anisimov, Zh. Éksp. Teor. Fiz. 111, 1328 (1997) [JETP 84, 734 (1997)].

    Google Scholar 

  15. D. W. Heerman, Computer Simulation Methods in Theoretical Physics, Springer Verlag, Berlin-New York, 1986.

    Google Scholar 

  16. V. V. Zhakhovskii, K. Nishihara, and S. I. Anisimov, Phys. Rev. Lett., in press.

  17. S. I. Anisimov and V. V. Zhakhovskii, JETP Lett. 57, 99 (1993).

    ADS  Google Scholar 

  18. J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity, Clarendon Press, Oxford, 1982.

    Google Scholar 

  19. P. Resibois and M. De Lechner, Classical Kinetic Theory of Fluids, Wiley, New York, 1977.

    Google Scholar 

  20. A. G. Bashkirov, Nonequilibrium Statistical Mechanics of Heterogeneous Fluid Systems, CRC Press, Boca Raton-London-Tokyo, 1995.

    Google Scholar 

  21. W. M. Kornegay, J. D. Fridman, and W. C. Worthington, in Proceedings of the 6th International Symposium on Rarefied Gas Dynamics, 1969, Vol. 1, p. 863.

    Google Scholar 

  22. S. P. Dyakov, Zh. Éksp. Teor. Fiz. 27, 288 (1954).

    MATH  MathSciNet  Google Scholar 

  23. A. G. Bashkirov, Phys. Fluids A 3, 960 (1991).

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Pis’ma Zh. Éksp. Teor. Fiz. 65, No. 9, 722–727 (10 May 1997)

Published in English in the original Russian journal. Edited by Steve Torstveit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anisimov, S.I., Zhakhovskii, V.V. & Fortov, V.E. Shock wave structure in simple liquids. Jetp Lett. 65, 755–761 (1997). https://doi.org/10.1134/1.567422

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.567422

PACS numbers

Navigation