Skip to main content
Log in

Universal effective coupling constants for the generalized Heisenberg model

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The aim of this study is to find universal critical values of the effective dimensionless coupling constant g 6 and refined universal values g 4 for Heisenberg ferromagnets with n-component order parameters. These constants appear in the equation of state and determine the nonlinear susceptibilities χ 4 and χ 6 in the critical region. Calculations are made of the first three terms of the expansion of g 6 in powers of g 4 in the limits of O(n) symmetry three-dimensional λϕ 4 theory, the resultant series is resummed by the Padé-Borel method, and then by substituting the fixed point coordinates g *4 in the resultant expression, numerical values of g *6 are obtained for different n. These numbers g *4 for n>3 were determined from a six-loop expansion for the β-function resummed using the Padé-Borel-Leroy technique. An analysis of the accuracy of these g *6 values showed that they may differ from the true values by no more than 1.6%. These values of g *6 were compared with those obtained by the 1/n expansion method which allowed the level of accuracy of this method to be assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. D. Mermin and G. Stare, Phys. Rev. Lett. 30, 1135 (1973).

    Article  ADS  Google Scholar 

  2. A. I. Sokolov, Zh. Éksp. Teor. Fiz. 78, 1985 (1980) [Sov. Phys. JETP 51, 998 (1980)].

    Google Scholar 

  3. J. A. Sauls and J. W. Serene, Phys. Rev. D 17, 1524 (1978).

    Article  ADS  Google Scholar 

  4. A. I. Sokolov, Zh. Éksp. Teor. Fiz. 79, 1137 (1980) [Sov. Phys. JETP 52, 1137 (1980)].

    Google Scholar 

  5. F. Wilczek, Int. J. Mod. Phys. A 7, 3911 (1992).

    ADS  Google Scholar 

  6. K. Rajagopal and F. Wilczek, Nucl. Phys. B 399, 395 (1993).

    Article  ADS  Google Scholar 

  7. G. A. Baker, B. G. Nickel, and D. I. Meiron, Phys. Rev. B 17, 1365 (1978).

    Article  ADS  Google Scholar 

  8. J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. Lett. 39, 95 (1977).

    ADS  Google Scholar 

  9. S. A. Antonenko and A. I. Sokolov, Phys. Rev. E 51, 1894 (1995).

    Article  ADS  Google Scholar 

  10. C. Bagnuls and C. Bervillier, Phys. Rev. B 41, 402 (1990).

    Article  ADS  Google Scholar 

  11. N. Tetradis and C. Wetterich, Nucl. Phys. B 422, 541 (1994).

    Article  ADS  Google Scholar 

  12. M. M. Tsypin, Phys. Rev. Lett. 73, 2015 (1994).

    Article  ADS  Google Scholar 

  13. T. Reisz, Phys. Lett. B 360, 77 (1995).

    ADS  Google Scholar 

  14. A. I. Sokolov, Fiz. Tverd. Tela (St. Petersburg) 38, 640 (1996) [Phys. Solid State 38, 354 (1996)].

    Google Scholar 

  15. S. Y. Zinn, S. N. Lai, and M. E. Fisher, Phys. Rev. E 54, 1176 (1996).

    Article  ADS  Google Scholar 

  16. A. I. Sokolov, V. A. Ul’kov, and E. V. Orlov, J. Phys. Studies 1, 362 (1997).

    Google Scholar 

  17. A. I. Sokolov, E. V. Orlov, and V. A. Ul’kov Phys. Lett. A 227, 255 (1997).

    Article  ADS  Google Scholar 

  18. R. Guida and J. Zinn-Justin, Nucl. Phys. B 489, 626 (1997).

    Article  ADS  Google Scholar 

  19. T. R. Morris, Nucl. Phys. B 495, 477 (1997).

    Article  ADS  Google Scholar 

  20. P. Butera and M. Comi, Phys. Rev. E 55, 6391 (1997).

    Article  ADS  Google Scholar 

  21. M. M. Tsypin, Phys. Rev. B 55, 8911 (1997).

    Article  ADS  Google Scholar 

  22. G. A. Baker and N. Kawashima, Phys. Rev. Lett. 75, 994 (1995).

    ADS  Google Scholar 

  23. G. A. Baker and N. Kawashima, J. Phys. A 29, 7183 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  24. A. I. Sokolov, Zh. Éksp. Teor. Fiz. 77, 1598 (1979) [Sov. Phys. JETP 50, 802 (1979)].

    Google Scholar 

  25. B. G. Nickel, D. I. Meiron, and G. A. Baker, Jr., Compilation of 2-pt and 4-pt graphs for continuous spin model, University of Guelph Report, 1977 (unpublished).

  26. G. A. Baker, Jr. and P. Graves-Morris, Padé Approximants, Parts 1 and 2 (Addison-Wesley, Reading, Mass, 1981; Mir, Moscow, 1986).

    Google Scholar 

  27. S. Goldner and G. Ahlers Phys. Rev. B 45, 13 129 (1992).

  28. J. A. Lipa, D. R. Swanson, J. A. Nissen, T. C. P. Chui, and U. E. Israelsson, Phys. Rev. Lett. 76, 944 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tverd. Tela (St. Petersburg) 40, 1284–1290 (July 1998)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokolov, A.I. Universal effective coupling constants for the generalized Heisenberg model. Phys. Solid State 40, 1169–1174 (1998). https://doi.org/10.1134/1.1130512

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1130512

Keywords

Navigation