Skip to main content

Advertisement

Log in

Nuclear temperature measurements with the double isotope ratio technique: Influence of the experimental conditions

  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The dependence of the nuclear temperatures of highly excited systems, extracted by means of the double ratios of the emitted isotopes, on the experimental conditions is investigated. Experimental data obtained in the Xe+Cu 30 MeV/nucleon reaction are used to study the sensitivity of the method and the effects of the energy thresholds on the obtained temperature values. We find that the temperatures extracted using the He/Li ratios can be strongly influenced by the experimental energy thresholds which are different for different elements. These distortions depend on the velocity of the emitting system and on the detection angle and therefore particular care is needed in the choice of the detectors in those experiments in which velocities are low and angles are large. The use of four isotopes of the same element make negligible such effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.W. Curtain, H. Toki and D.K. Scott, Phys. Lett. B 123, 289 (1983).

    Article  ADS  Google Scholar 

  2. A.D. Panagiotou, M.W. Curtain, H. Toki, D.K. Scott and P.J. Siemens, Phys. Rev. Lett. 52, 495 (1984).

    Article  ADS  Google Scholar 

  3. G.F. Bertsch and P.J. Siemens, Phys. Lett. B 126, 9 (1983).

    Article  ADS  Google Scholar 

  4. A.L. Goodman, J.I. Kapusta and A.Z. Mekjian, Phys. Rev. C 30, 851 (1984).

    Article  ADS  Google Scholar 

  5. H.R. Jaqaman, G. Papp and D.H.E. Gross, Nucl. Phys. A 514, 327 (1990).

    Article  ADS  Google Scholar 

  6. B. Jakobsson, G. Jönsson, B. Lindkvist and A. Oskarsson, Z. Phys. A 307, 293 (1982).

    Article  Google Scholar 

  7. B. Jakobsson et al., Nucl. Phys. A 509, 195 (1990).

    Article  ADS  Google Scholar 

  8. H.H. Gutbrod, A.I. Warwick and H. Wieman, Nucl. Phys. A 387, 177c (1982).

    Article  ADS  Google Scholar 

  9. A.D. Panagiotou, M.W. Curtin and D.K. Scott, Phys. Rev. C 31, 55 (1985).

    Article  ADS  Google Scholar 

  10. W.G. Lynch, Annu. Rev. Nucl. Part. Sci. 37, 493 (1987).

    Article  ADS  Google Scholar 

  11. L.G. Moretto, Annu. Rev. Nucl. Part. Sci. 43, 379 (1993).

    Article  ADS  Google Scholar 

  12. J.E. Finn et al, Phys. Rev. Lett. 49, 1321 (1982).

    Article  ADS  Google Scholar 

  13. J. Pochodzalla et al., Phys. Rev. Lett. 75, 1040 (1995).

    Article  ADS  Google Scholar 

  14. A. Kolomiets et al., Phys. Rev. C 54, R472 (1996).

    Article  ADS  Google Scholar 

  15. M.J. Huang et al., Phys. Rev. Lett. 78, 1648 (1997).

    Article  ADS  Google Scholar 

  16. R. Wada et al., Phys. Rev. C 55, 227 (1997).

    Article  ADS  Google Scholar 

  17. F. Gulminelli and D. Durand, Nucl. Phys. A 615, 117 (1997).

    Article  ADS  Google Scholar 

  18. Y.G. Ma et al., Phys. Lett. B 390, 41 (1997).

    Article  ADS  Google Scholar 

  19. H.F. Xi et al., Phys. Rev. C 58, R2636 (1998).

    Article  ADS  Google Scholar 

  20. J. A. Hauger et al., Phys. Rev. C 57, 764 (1998).

    Article  ADS  Google Scholar 

  21. P.M. Milazzo et al., Phys. Rev. C 58, 953 (1998).

    Article  ADS  Google Scholar 

  22. S. Albergo et al., Nuovo Cimento 89, 1 (1985).

    ADS  Google Scholar 

  23. M.B. Tsang et al., Phys. Rev. Lett. 78, 3836 (1997).

    Article  ADS  Google Scholar 

  24. I. Iori et al., Nucl. Instrum. Methods Phys. Res. A 325, 458 (1993).

    Article  ADS  Google Scholar 

  25. H.A. Bethe Ann. Phys. (Leipzig) 5, 325 (1930). H.H. Anderson and J.F. Ziegler Stopping Power and Ranges in All Elements (Pergamon Press, 1977); F. Hubert, R. Bimbot and H. Gauvin, Nucl. Instrum. Methods B 36, 357 (1989).

    ADS  Google Scholar 

  26. R.T. de Souza et al., Nucl. Instrum. Methods Phys. Res. A 295, 109 (1990).

    Article  ADS  Google Scholar 

  27. C. Cavata et al., Phys. Rev. C 42, 1760 (1990).

    Article  ADS  Google Scholar 

  28. P.M. Milazzo et al., Phys. Rev. C. 60, 044606 (1999).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Milazzo.

Additional information

Communicated by C. Signorini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milazzo, P.M., Vannini, G., Bruno, M. et al. Nuclear temperature measurements with the double isotope ratio technique: Influence of the experimental conditions. Eur. Phys. J. A 8, 355–360 (2000). https://doi.org/10.1007/s100500070087

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s100500070087

PACS

Navigation