Skip to main content
Log in

Prinzipien des epithelialen Transportes in Niere und Darm

  • Originalien
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

Epithelia of kidney and small intestine consist of one layer of cells which, at their luminal edge, are linked together by terminal bars. Solute transport proceeds either across the cells, which is true of all active transports, or it proceeds paracellularly through the basolateral spaces and terminal bars and is then passive. The driving force for the active transport of a substance is derived either directly from metabolism (primary active transport), or from the gradient of another solute, usually Na+, which in turn is created by primary active transport. In the latter case the transport is referred to as secondary active. The driving forces of passive transport are the electrochemical gradient of the respective substance and solvent drag. The proximal parts of the kidney as well as of the intestine are leaky so that a considerable part of net reabsorption proceeds passively. Their distal parts, however, where the transport is regulated, are tight so that large concentration differences can be created and maintained. Transcellular active transport is only possible if the cells are polar, i.e., the transport characteristics of the luminal cell membrane differ from those of the contraluminal cell membrane. By measuring the cellular electrical potential difference or by measuring transport into isolated plasma membrane vesicles from either cell side the driving forces for the two transport steps, the luminal and contraluminal, have been elucidated. Schemes for the transport steps in the proximal tubule and in the small intestine are given. They show the principal similarity of the transport of many substances in both epithelia.

Zusammenfassung

Das Epithel von Niere und Darm besteht aus einer einzigen Lage von Zellen, die an ihrer luminalen Seite durch Schlußleisten zusammengekittet sind. Der Stofftransport geht entweder transzellulär durch die Zellen hindurch und ist dann in der Regel aktiv, oder er geht parazellulär an den Zellen vorbei durch die Schlußleisten und interzellulären Spalten und ist dann passiv. Die Triebkraft für den aktiven Transport kommt entweder direkt aus dem Stoffwechsel und wirkt mittels ATPasen auf die zu transportierenden Stoffe. Wir haben dann einen primär aktiven Transport vor uns. Oder sie kommt aus Gradienten von Substanzen, in erster Linie Natriumionen, die ihrerseits primär aktiv transportiert wurden. Man spricht dann von sekundär aktivem Transport. Die Triebkräfte für den passiven Transport sind Konzentrations- bzw. elektrochemische Potentialdifferenzen sowie der durch Reibung bedingte Mitreißeffekt des resorbierten Wassers. Sowohl in Niere als auch im Darm haben die proximalen Abschnitte, wo eine große Flüssigkeitsmenge isoton resorbiert wird, undichte Schlußleisten, so daß eine beträchtliche Substanzmenge passiv resorbiert werden kann. In den distalen Abschnitten hingegen, wo der Transport geregelt wird, sind die Schlußleisten dicht, so daß entsprechende Konzentrationsunterschiede erzeugt und aufrecht erhalten werden können. Aktiver Transport durch die Epithelzellen hindurch ist indessen nur möglich, wenn der Stofftransport polar ist, d.h. an der luminalen Zellseite anders als an der kontraluminalen Zellseite. Durch elektrophysiologische Messungen an den einzelnen Zellseiten als auch durch Transportmessungen an geschlossenen Vesikeln, die von den beiden Zellseiten gewonnen wurden, konnten die treibenden Kräfte für die einzelnen Substanzen weitgehend festgelegt werden. An Schemata, in die die Transportmechanismen der einzelnen Zellseiten eingezeichnet sind, wird eine weitgehende Identität der Transportmechanismen im proximalen Tubulus und Dünndarm deutlich.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Aronson, P.S., Sacktor, B.: The Na+ gradient dependent transport of D-glucose in renal brush border membranes. J. Biol. Chem.250, 6032–6039 (1975)

    Google Scholar 

  2. Baldamus, C.A., Radtke, H.W., Rumrich, G., Sauer, F., Ullrich, K.J.: Reflection coefficient and permeability of urea in the proximal convolution of the rat kidney. J. Membrane Biol.7, 377–390 (1972)

    Google Scholar 

  3. Barac-Nieto, M., Murer, H., Kinne, R.: Lactate-sodium cotransport in rat renal brush border membranes. Amer. J. Physiol. (in press)

  4. Barry, R.J.C., Smyth, D.H., Wright, E.M.: Short-circuit current and solute transfer by rat jejunum. J. Physiol.181, 410–431 (1965)

    Google Scholar 

  5. Beck, J.C., Sacktor, B.: The sodium electrochemical potential mediated uphill transport of D-glucose in renal brush border membrane vesicles. J. Biol. Chem.253, 5531–5535 (1978)

    Google Scholar 

  6. Burckhardt, G., Stange, G., Kinne, R., Murer, H.: The sodium dependent transport of L-glutamic acid by brush border membrane vesicles of rat and rabbit proximal tubule. Abstrakt Jahrestagung Dt. Ges. für Nephrologie, Berlin 1979

  7. Burg, M.B., Green, N.: Function of the thick ascending limb of Henle's loop. Am. J. Physiol.224, 659–668 (1973)

    Google Scholar 

  8. Curran, P.F., Schultz, S.G.: Transport across membranes: general principles. In: Handbook of Physiology, Section 6, Alimentary Canal, Vol. III, Intestinal Absorption. Code, C.F. (ed.), pp. 1217–1243, Washington, D.C.: Amer. Physiol. Soc. 1968

    Google Scholar 

  9. Evers, J., Murer, H., Kinne, R.: Phenylalanine uptake in isolated renal brush border vesicles. Biochim. Biophys. Acta426, 598–615 (1976)

    Google Scholar 

  10. Fass, S.J., Hammerman, M.R., Sacktor, B.: Transport of aminoacids in renal brush-border membrane vesicles. Uptake of the neutral aminoacid alanine. J. Biol. Chem.252, 583–590 (1977)

    Google Scholar 

  11. Frömter, E., Diamond, J.M.: Route of passive ion permeation in epithelia. Nature New Biol.235, 9–13 (1972)

    Google Scholar 

  12. Frömter, E.: The route of passive ion movement through the epithelium of Necturus gallbladder. J. Membrane Biol.8, 318–346 (1972)

    Google Scholar 

  13. Frömter, E., Rumrich, G., Ullrich, K.J.: Phenomenologic description of Na+, Cl and HCO 3 absorption from proximal tubules of rat kidney. Pflügers Arch.343, 189–220 (1973)

    Google Scholar 

  14. Frömter, E.: Magnitude and significance of the paracellular shunt path in rat kidney proximal tubule. In: Intestinal Permeation. Kramer, M., Lauterbach, F. (eds.), pp. 166–178. Amsterdam: Excerpta Medica 1977

    Google Scholar 

  15. Frömter, E.: Primary and secondary active transport mechanism in rat renal proximal tubule. In: New Aspects on Renal Function. Ullrich, K.J., Vogel, H.G. (eds.), pp. 27–36. Amsterdam: Excerpta Medica 1978

    Google Scholar 

  16. Frömter, E.: Solute transport across epithelia: What can we learn from micropuncture studies on kidney tubules? J. Physiol.288, 1–31 (1979)

    Google Scholar 

  17. Gmaj, P., Murer, H., Kinne, R.: Calcium ion transport across plasma membranes isolated from rat kidney cortex. Biochem. J.178, 549–557 (1979)

    Google Scholar 

  18. Goldmann, D.R., Roth, K.S., Langfitt, T.W., Segal, S.: L-proline transport by newborn rat kidney brush-border membrane vesicles. Biochem. J.178, 253–256 (1979)

    Google Scholar 

  19. Hammerman, M.R., Sacktor, B.: Transport of aminoacids in renal brushborder membrane vesicles. Uptake of proline. J. Biol. Chem.252, 591–593 (1977)

    Google Scholar 

  20. Hegel, U., Frömter, E., Wick, T.: Der elektrische Wandwider-stand des proximalen Konvolutes der Rattenniere. Pflügers Arch.294, 274–290 (1967)

    Google Scholar 

  21. Helman, S.I., Grantham, J.J., Burg, M.B.: Effect of vasopressin on electrical resistance of renal cortical collecting tubules. Am. J. Physiol.220, 1825–1832 (1971)

    Google Scholar 

  22. Henriques de Jesus, C.: Short circuit current and total conductance measurements on rabbit ileum. J. Physiol.268, 353–369 (1977)

    Google Scholar 

  23. Hildmann, B., Storelli, C., Haase, W., Barac-Nieto, M., Murer, H.: L-lactate-sodium cotransport in rabbit small intestinal brush border membrane vesicles. Biochem. J. (in press)

  24. Hildmann, B., Schmidt, A., Murer, H.: Ca++ transport in basal-lateral plasma membranes isolated from rat small intestinal epithelial cells. Abstrakt Herbsttagung Dt. Ges. f. Physiol., Kiel 1979

  25. Hoffmann, N., Thees, M., Kinne, R.: Phosphate transport by isolated renal brush border vesicles. Pflügers Arch.362, 147–156 (1976)

    Google Scholar 

  26. Katchalsky, A., Curran, P.F.: Nonequilibrium thermodynamics. In: Biophysics. Cambridge, Mass.: Harvard Univ. Press 1965

    Google Scholar 

  27. Kedem, O., Katchalsky, A.: Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim. biophys. Acta27, 229–246 (1958)

    Google Scholar 

  28. Kinne, R., Murer, H., Kinne-Saffran, E., Thees, M., Sachs, G.: Sugar transport by renal plasma membrane vesicles. Characterization of the systems in the brush-border microvilli and basal-lateral plasma membranes. J. Membrane Biol.21, 375–395 (1975)

    Google Scholar 

  29. Kinne, R., Berner, W., Hoffmann, N., Murer, H.: Phosphate transport by isolated renal and intestinal plasma membranes. In: Phosphate Metabolism. Massry, S.G., Ritz, E., (eds.), pp. 265–277. New York: Plenum Press 1977

    Google Scholar 

  30. Kinne, R.: Metabolic correlates of tubular function. In: Membrane Transport in Biology IV B (Eds. G. Giebisch, D.C. Tosteson, H.H. Ussing), pp. 529–562. Berlin, Heidelberg, New York: Springer 1978

    Google Scholar 

  31. Kohn, P.G., Smyth, D.H., Wright, E.M.: Effects of amino acids, dipeptides and saccharides on the electrical potential across rat small intestine. J. Physiol.196, 723–746 (1968)

    Google Scholar 

  32. Kühn, K., Reale, E.: Junctional complexes of the tubular cells in human kidney as revealed with freeze-fraction. Cell Tiss. Res.160, 193–205 (1975)

    Google Scholar 

  33. Liedke, C.M., Hopfer, U.: Anion transport in brush border membranes isolated from rat small intestine. Biochem. Biophys. Res. Commun.76, 579–585 (1977)

    Google Scholar 

  34. Lücke, H., Stange, G., Murer, H.: Sulphate-sodium cotransport by brush border membrane vesicles isolated from rat kidney cortex. Biochem. J.182, 223–229 (1979)

    Google Scholar 

  35. Lücke, H., Stange, G., Murer, H.: Sulphate-sodium cotransport by brush border membrane vesicles isolated from rat ileum. Gastroenterology (in press)

  36. Malnic, G., Giebisch, G.: Some electrical properties of distal tubular epithelium in the rat. Amer. J. Physiol.223, 797–808 (1972)

    Google Scholar 

  37. Martinez-Palomo, A., Erlij, D.: Structure of tight junctions in epithelia with different permeability. Proc. Nat. Acad. Sci. USA72, 4487–4491 (1975)

    Google Scholar 

  38. McNamara, P.D., Ozegovic, B., Pepe, L.M., Segal, S.: Proline and glycine uptake by renal brush-border membrane vesicles. Proc. Nat. Acad. Sci. USA73, 4521–4525 (1976)

    Google Scholar 

  39. Murer, H., Hopfer, U.: Demonstration of electrogenic Na+ dependent D-glucose transport in intestinal brush border membranes. Proc. Nat. Acad. Sci. USA71, 484–488 (1974)

    Google Scholar 

  40. Murer, H., Hopfer, U., Kinne, R.: Sodium/proton antiport in brush border vesicles isolated from rat small intestine and kidney. Biochem. J.154, 597–604 (1977)

    Google Scholar 

  41. Murer, H., Kinne, R.: Sidedness and coupling of transport processes in small intestinal and renal epithelia. In: Biochemistry of Membrane Transport, FEBS Symposium No. 42. Semenza, G., Carafoli, E., (eds.), pp. 294–304. Berlin, Heidelberg, New York: Springer 1977

    Google Scholar 

  42. Murer, H., Kinne, R.: The role of sodium in anion transport across renal and intestinal cells: studies with isolated plasma membrane vesicles. Fed. Proc., in press, 1979

  43. Rauh, S., Frömter, E.: Electrical properties of the medullary collecting ducts of the golden hamster kidney. II. The transepithelial resistance. Pflügers Arch.351, 113–131 (1974)

    Google Scholar 

  44. Rose, R.C., Schultz, S.G.: Studies on the electrical potential profile across rabbit ileum: Effects of sugars and amino acids on transmural and transmucosal electrical potential difference. J. gen. Physiol.57, 639–663 (1971)

    Google Scholar 

  45. Sauer, F.: Nonequilibrium thermodynamics of kidney tubule transport. In: Handbook of Physiology, Sect. 8, Chapt. 12. Orloff, J., Berliner, R.W., (eds.), pp. 399–414. Washington, D.C.: Amer. Physiol. Soc. 1973

    Google Scholar 

  46. Scalera, V., Storelli, C., Storelli-Joss, C., Hasse, W., Murer, H.: A simple and fast method for the isolation of lateral basal plasma membranes from rat small intestinal epithelial cells. Biochem. J. (in press)

  47. Scalera, V., Huang, Y.-K., Hildmann, B., Haase, W., Murer, H.: A simple and fast method for the isolation of lateral-basal plasma membranes from rat and pig kidney cortex. J. Membrane Biol. (in press)

  48. Schafer, J.A., Heinz, E.: The effect of reversal of Na+ and K+ electrochemical potential gradient on the active transport of amino acids in Ehrlich ascites tumor cells. Biochim. biophys. Acta249, 15–33 (1971)

    Google Scholar 

  49. Schlögl, R.: Stofftransport durch Membranen. In: Fortschritte der Physikalischen Chemie, Vol. 9. Darmstadt: Verlag Dietrich Steinkopff 1964

    Google Scholar 

  50. Schneider, E.G.: Effect of internal K+ gradient (K +i >K +o ) on the Na+-dependent transport of L-glutamate by rabbit renal brush border vesicles. Fed. Proc.38, 101 (1979)

    Google Scholar 

  51. Schultz, S.G., Zalusky, R.: Ion transport in isolated rabbit ileum. II. The interaction between active sodium and active sugar transport. J. gen. Physiol.47, 1043–1059 (1964)

    Google Scholar 

  52. Schultz, S.G., Curran, P.F.: Intestinal absorption of sodium chloride and water. In: Handbook of Physiology, Section 6, Alimentary Canal, Vol. III, Intestinal Absorption, Code, C.F. (ed.), pp. 1245–1275. Washington, D.C.: Amer. Physiol. Soc. 1968

    Google Scholar 

  53. Sigrist-Nelson, K., Murer, H., Hopfer, U.: Active alanine transport in isolated brush border membranes. J. Biol. Chem.250, 5674–5680 (1975)

    Google Scholar 

  54. Turner, R.J., Silverman, M.: Sugar uptake into brush-border vesicles from normal human kidney. Proc. Nat. Acad. Sci. USA74, 2825–2829 (1977)

    Google Scholar 

  55. Turnheim, K., Frizzell, R.A., Schultz, S.G.: Interaction between cell sodium and the amiloride-sensitive sodium entry step in rabbit colon. J. Membrane Biol.39, 233–256 (1978)

    Google Scholar 

  56. Ullrich, K.J.: Permeability characteristics of the mammalian nephron. In: Handbook of Physiology, Section 8. Orloff, J., Berliner, R.W., (eds.), pp. 378–398. Washington, D.C.: Amer. Physiol. Soc. 1973

    Google Scholar 

  57. Ullrich, K.J., Capasso, G., Rumrich, G., Klöss, S.: Effect of parathyroid hormone on the active Ca++ reabsorption in the proximal convolution of the rat kidney. Pflügers Arch.359, R 118 (1975)

    Google Scholar 

  58. Ullrich, K.J., Rumrich, G., Klöss, S.: Active Ca2+ reabsorption in the proximal tubule of the rat kidney. Dependence on sodium and buffer transport. Pflügers Arch.365, 223–228 (1976)

    Google Scholar 

  59. Ullrich, K.J., Frömter, E.: Active and passive transtubular transport in the proximal convolution. Proc. VII. Int. Congress Nephrol. Lemieux, G., Dirks, J.H. (eds.), pp. 147–154. Basel: S. Karger 1978

    Google Scholar 

  60. Ullrich, K.J., Frömter, E., Gmaj, P., Kinne, R., Murer, H.: What are the driving forces for the proximal tubular H+ and Ca++ transport? The electrochemical gradient for Na+ and/or ATP. In: Biochemical Nephrology, Current Problems in Clinical Biochemistry 8. Guder, W.G., Schmidt, U. (eds.), pp. 170–177. Bern: Hans Huber 1978

    Google Scholar 

  61. Wright, E.M., Diamond, J.M.: Effects of pH and polyvalent cations on the selective permeability of gallbladder epithelium to monovalent ions. Biochim. biophys. Acta163, 57–74 (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ullrich, K.J., Frömter, E. & Murer, H. Prinzipien des epithelialen Transportes in Niere und Darm. Klin Wochenschr 57, 977–991 (1979). https://doi.org/10.1007/BF01479983

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01479983

Key words

Schlüsselwörter

Navigation