Skip to main content
Log in

Comparative studies on phenol-soluble nonhistone chromatin proteins in normal and leukaemic human leukocytes

Vergleichende Untersuchungen über phenol-lösliche Chromatinproteine in normalen und leukämischen menschlichen Leukozyten

  • Originalien
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Phenol-lösliche Chromatinprotein wurden aus Zellkernen normaler und leukämischer menschlicher Leukozyten isoliert. Die Proteine, deren Bedeutung im Rahmen der Kontrolle des Transkriptionsvorganges diskutiert wird, wurden durch Analyse ihrer gelelektrophoretischen Verteilungsmuster und ihrer Markierung mit14C-Leuzin oder32P-Orthophosphat verglichen. Außerdem wurde der Einfluß interkalierender Agentien wie Adriamycin untersucht.

Die Fraktion phenol-löslicher Nicht-Histon-Proteine des Chromatins menschlicher Leukozyten enthält mindestens 20–35 individuelle Proteine, welche mit zunehmender Laufgeschwindigkeit auf 10%-Polyacrylamidgelen numeriert wurden. Zwischen normalen Lymphozyten und normalen Granulozyten ergaben sich charakteristische Unterschiede mit jeweils einer spezifischen Proteinbande (Nr. 26a bei Lymphozyten; Nr. 25 bei Granulozyten) für beide Zelltypen. Interessanterweise war das Protein Nr. 25 in Myelozyten (CML) nicht vorhanden, jedoch in reifen Granulozyten desselben Patienten (CML) nachweisbar. Die radioaktiven Markierungen der Proteine mit32P (Phosphorilierung) bzw.14C-Leuzin (Umsatz) nahmen ganz allgemein mit zunehmender Zelldifferenzierung ab. Leukämische Lymphozyten unterschieden sich von normalen Lymphozyten durch erhöhte Protein-Konzentrationen im hochmolekularen Bereich. Beim Vergleich von Zellen aus AML, ALL und der CML-Blastenkrise ergaben sich bei weitgehend ähnlichen Mustern keine typischen Differenzen. Ebenso waren gemeinsame leukämiespezifische Abweichungen gegenüber Normalzellen nicht nachzuweisen. Lymphosarkomzellen zeigten allerdings quantitative und qualitative Abweichungen vom gewöhnlichen Verteilungsmuster der Zellkernproteine.

Nach Einwirkung von Adriamycin in vitro kam es bei den verschiedensten Zellinien dosisabhängig zu einer selektiven Abnahme eines bestimmten Proteins (Nr. 30) dessen mögliche Funktion als „marker“ für den Interkalationslocus von Adriamycin an der DNA diskutiert wird.

Summary

Phenol-soluble chromatin proteins which may be involved in gene control mechanisms have been isolated from citric acid nuclei of normal and leukaemic human leukocytes derived from freshly obtained venous blood. They were compared by one-dimensional gel electrophoresis and by comparative labelling with14C-leucine or32P-orthophosphate. In addition, the influence of intercalating agents such as adriamycin and daunomycin was studied.

Between 20–35 individual proteins were found in the phenol-soluble nonhistone protein fraction of human leukocytes. They were numbered with increasing mobility on 10% polyacrylamide gels. Distinct differences were found between normal lymphocytes and normal granulocytes, with one specific protein (no. 26 a in lymphocytes; no. 25 in granulocytes) for both cell types. Interestingly, protein no. 25 was not present in CML myelocytes but in CML granulocytes.32P-and leucine labels were generally found decreased with increasing cell differentiation. Leukaemic lymphocytes differed from normal lymphocytes by increased protein concentrations in the high molecular weight region.

In comparisons of AML and ALL cells, including blast cells of CML blast crisis, no constant differences nor any markers common to leukaemic cells as compared to normal cells were detectable. However, lymphosarcoma cells showed quantitiative and qualitative aberrations from the usual leukaemia pattern. Afterin vitro incubations of cells with adriamycin a selective decrease of an individual protein (no. 30) was noted. This protein may serve as a marker for the intercalation site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Arnold, E.A., Buksas, M.M., Young, K.E.: A comparative study of some properties of chromatin from two “minimal deviation” hepatomas. Cancer Res.33, 1169–1176 (1973)

    Google Scholar 

  2. Barrett, T., Maryanka, D., Hamlyn, P.H., Gould, H.J.: Nonhistone proteins control gene expression in reconstituted chromatin. Proc. nat. Acad. Sci. USA71, 5057–5061 (1974)

    Google Scholar 

  3. Biessmann, H., Rajewsky, M.F.: Nuclear protein patterns in developing and adult brain and in ethylnitrosourea-induced neuroectodermal tumours of the rat. J. Neurochem.24, 387–393 (1975)

    Google Scholar 

  4. Boyum, A.: Separation of leucocytes from blood and bone marrow. Scand. J. clin. Lab. Invest.21, Suppl. No. 97 (1968)

    Google Scholar 

  5. Busch, H., Ballal, N.R., Olson, M.O.J., Yeoman, L.C.: Chromatin and its nonhistone proteins. In: Methods in Cancer Research (H. Busch, ed.), Vol. 11, pp. 43–121. New York: Academic Press 1975

    Google Scholar 

  6. Chae, C.B., Smith, M.C., Morris, H.P.: Chromosomal nonhistone proteins of rat hepatomas and normal rat liver. Biochem. biophys. Res. Commun.60, 1468–1474 (1974)

    Google Scholar 

  7. Chiu, J.F., Tsai, Y.H., Sakuma, K., Hnilica, L.S.: Regulation ofin vitro mRNA transcription by a fraction of chromosomal proteins. J. biol. Chem.250, 9431–9433 (1975)

    Google Scholar 

  8. Desai, L.S.: Mechanism of gene interaction and histone deacetylation in human leukemic cells. J. Cell Biol.63, 82a, Abstr. no. 163 (1974)

  9. Desai, L.S., Wulff, U.C., Foley, G.E.: Properties of chromosomal proteins of human leukemic cells. Biochimie57, 315–324 (1975)

    Google Scholar 

  10. Di Marco, A., Arcamone, F.: DNA complexing antibiotics — daunomycin, adriamycin and their derivatives. Arzneim.-Forsch.25, 368–375 (1975)

    Google Scholar 

  11. Dounce, A.L.: The isolation and composition of cell nuclei and nucleoli. In: The Nucleic Acids. (E. Chargaff and J.N. Davidson, eds.), Vol. 2, pp. 93–153. New York: Academic Press 1955

    Google Scholar 

  12. Johnson, E.M., Karn, J., Allfrey, V.G.: Early nuclear events in the induction of lymphocyte proliferation by mitogens. Effects of concanavalin A on the phosphorylation and distribution of nonhistone chromatin proteins. J. biol. Chem.249, 4990–4999 (1974)

    Google Scholar 

  13. Kostraba, N.C., Wang, T.Y.: Differential activation of transcription of chromatin by non-histone fractions. Biochim. biophys. Acta (Amst.)262, 169–180 (1972)

    Google Scholar 

  14. Levy, R., Levy, S., Rosenberg, S.A., Simpson, R.T.: Selective stimulation of nonhistone chromatin protein synthesis in lymphoid cells by phytohemagglutinin. Biochemistry12, 224–228 (1973)

    Google Scholar 

  15. MacGillivray, A.J., Carroll, D., Paul, J.: The heterogeneity of the non-histone chromatin proteins from mouse tissues. FEBS Lett.13, 204–208 (1971)

    Google Scholar 

  16. MacGillivray, A.J., Cameron, A., Krauze, R.J., Rickwood, D., Paul, J.: The non-histone proteins of chromatin. Their isolation and composition in a number of tissues. Biochim. biophys. Acta (Amst.)277, 384–402 (1972)

    Google Scholar 

  17. Marushige, K., Bonner, J.: Template properties of liver chromatin. J. molec. Biol.15, 160–174 (1966)

    Google Scholar 

  18. Marushige, K., Brutlag, D., Bonner, J.: Properties of chromosomal nonhistone protein of rat liver. Biochemistry7, 3149–3155 (1968)

    Google Scholar 

  19. Masera, P., Pileri, A., Brachet, J., Hulin, N.: Lymphocyte actinomycin binding capacity in chronic lymphocytic leukaemia. Experientia (Basel)28, 1484 (1972)

    Google Scholar 

  20. McClure, M.E., Hnilica, L.S.: Nuclear proteins in genetic restriction. III. The cell cycle. Sub-cell. Biochem.1, 311–332 (1972)

    Google Scholar 

  21. Noodén, L.D., van den Broek, H.W.J., Sevall, J.S.: Stabilization of histones from rat liver. FEBS Lett.29, 326–328 (1973)

    Google Scholar 

  22. Paul, J., Gilmour, R.S.: Organ-specific restriction of transcription in mammalian chromatin. J. molec. Biol.34, 305–316 (1968)

    Google Scholar 

  23. Pigram, W.J., Fuller, W., Hamilton, L.D.: Sterochemistry of intercalation: interaction of daunomycin with DNA. Nature, New Biol.235, 17–19 (1972)

    Google Scholar 

  24. Pileri, A., Masera, P., Hulin, N.: Brachet, J.: Actinomycin binding capacity in human leukaemic lymphoid cells. Acta haemat. (Basel)48, 89–97 (1972)

    Google Scholar 

  25. Platz, R.D., Kish, V.M., Kleinsmith, L.J.: Tissue specificity of non-histone chromatin phosphoproteins. FEBS Lett.12, 38–40 (1970)

    Google Scholar 

  26. Sawada, H., Gilmore, V.H., Saunders, G.F.: Transcription from chromatins of human lymphocytic leukemia cells and normal lymphocytes. Cancer Res.33, 428–434 (1973)

    Google Scholar 

  27. Seeber, S., Schmidt, C.G.: Isolation of rapidly labelled nuclear RNA of high specific activity from human leukaemic cells. Klin. Wschr.51, 677–679 (1973)

    Google Scholar 

  28. Seeber, S., Brucksch, K.P., Käding, J., Schmidt, C.G., Busch, H.: Oligonucleotides of ribosomal 28 S RNA in human leukemic cells and normal lymphocytes. Cancer Res.34, 1281–1288 (1974a)

    Google Scholar 

  29. Seeber, S., Käding, J., Brucksch, K.P., Schmidt, C.G.: Defective rRNA synthesis in human leukaemic blast cells? Nature (Lond.)248, 673–675 (1974b)

    Google Scholar 

  30. Seeber, S., Schmidt, C.G., Busch, H.: Isolation, separation and fractionation of human leukemic and normal leukocytes. Comparative studies on preribosomal and ribosomal RNA and on non-histone chromatin proteins. In: Methods in Cancer Research (H. Busch, ed.), Vol. 14, pp. 131–190. New York: Academic Press 1978

    Google Scholar 

  31. Spelsberg, T.C., Hnilica, L.S., Ansevin, A.T.: Proteins of chromatin in template restriction. III. The macromolecules in specific restriction of the chromatin DNA. Biochim. biophys. Acta (Amst.)228, 550–562 (1971)

    Google Scholar 

  32. Stein, G.S., Borun, T.W.: The synthesis of acidic chromosomal proteins during the cell cycle of HeLa S-3 cells. I. The accelerated accumulation of acidic residual nuclear protein before the initiation of DNA replication. J. Cell Biol.52, 292–307 (1972)

    Google Scholar 

  33. Stein, G.S., Park, W., Thrall, C., Mans, R., Stein, J.: Regulation of cell cycle stage-specific transcription of histone genes from chromatin by non-histone chromosomal proteins. Nature (Lond.)257, 764–767 (1975)

    Google Scholar 

  34. Taylor, C.W., Yeoman, L.C., Daskal, I., Busch, H.: Two-dimensional electrophoresis of proteins of citric acid nuclei prepared with aid of a Tissumizer®. Exp. Cell Res.82, 215–226 (1973)

    Google Scholar 

  35. Teng, C.S., Hamilton, T.H.: Role of chromatin in estrogen action in the uterus. II. Hormone-induced synthesis of nonhistone acidic proteins which restore histone-inhibited DNA-dependent RNA synthesis. Proc. nat. Acad. Sci. USA63, 465–472 (1969)

    Google Scholar 

  36. Teng, C.S., Teng, C.T., Allfrey, V.G.: Studies of nuclear acidic proteins. Evidence for their phosphorylation, tissue specificity, selective binding to deoxyribonucleic acid, and stimulatory effects on transcription. J. biol. Chem.246, 3597–3609 (1971)

    Google Scholar 

  37. Viñuela, E., Algranati, I.D., Ochoa, S.: Synthesis of virus-specific proteins in Escherichia coli infected with the RNA bacteriophage MS2. Europ. J. Biochem.1, 3–11 (1967)

    Google Scholar 

  38. Wang, T.Y.: Restoration of histone-inhibited DNA-dependent RNA synthesis by acidic chromatin proteins. Exp. Cell Res.53, 288–291 (1968)

    Google Scholar 

  39. Weisenthal, L.M., Ruddon, R.W.: Characterization of human leukemia and Burkitt lymphoma cells by their acidic nuclear protein profiles. Cancer Res.32, 1009–1017 (1972)

    Google Scholar 

  40. Weisenthal, L.M., Ruddon, R.W.: Catabolism of nuclear proteins in control and phytohemagglutinin-stimulated human lymphocytes, leukemic leukocytes, and Burkitt lymphoma cells. Cancer Res.33, 2923–2935 (1973)

    Google Scholar 

  41. Wu, F.C., Elgin, S.C.R., Hood, L.E.: Nonhistone chromosomal proteins of rat tissues. A comparative study by gel electrophoresis. Biochemistry12, 2792–2797 (1973)

    Google Scholar 

  42. Yeoman, L.C., Taylor, C.W., Jordan, J.J., Busch, H.: Two-dimensional polyacrylamide gel electrophoresis of chromatin proteins of normal rat liver and Novikoff hepatoma ascites cells. Biochem. biophys. Res. Commun.53, 1067–1076 (1973)

    Google Scholar 

  43. Yeoman, L.C., Taylor, C.W., Jordan, J.J., Busch, H.: Differences in chromatin proteins of growing and non-growing tissues. Exp. Cell Res.91, 207–215 (1975)

    Google Scholar 

  44. Yeoman, L.C., Seeber, S., Taylor, C.W., Fernbach, D.J., Falletta, J.M., Jordan, J.J., Busch, H.: Differences in chromatin proteins of resting and growing human lymphocytes. Exp. Cell Res.100, 47–55 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

These studies were supported by grant Se 161/6 from Deutsche Forschungsgemeinschaft, Bonn-Bad Godesberg

Supported by Humboldt-Stiftung

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seeber, S., Meshkov, T., Brucksch, K.P. et al. Comparative studies on phenol-soluble nonhistone chromatin proteins in normal and leukaemic human leukocytes. Klin Wochenschr 57, 257–265 (1979). https://doi.org/10.1007/BF01476506

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01476506

Schlüsselwörter

Key words

Navigation