Skip to main content
Log in

Renal factors in juvenile hypertension

Renale Faktoren bei juveniler Hypertonie

  • Referate
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Abweichend von früheren Auffassungen wird heute zunehmend die essentielle Hypertonie als eine Erkrankung auch des Kindes- und Jugendalters angesehen, aus der sich später die essentielle Hypertonie des Erwachsenen entwickelt. Die zur Entstehung der juvenilen Hypertonie führenden Pathomechanismen wurden in klinischen, epidemiologischen und tierexperimentellen Studien untersucht. Zu den renalen Mechanismen, die wahrscheinlich bei der Entstehung der juvenilen Hypertonie eine Rolle spielen, gehören Faktoren, die die renale Kontrolle der Salz-Wasser-Bilanz beeinflussen und vasoaktive Substanzen wie das renale Kallikrein-Kinin-System, das Renin-Angiotensin-System, das Prostaglandin-System und andere bislang weniger gut definierte Hormone. Diese renalen Hormone haben zahlreiche Wechselwirkungen untereinander. Neben ihren direkten Wirkungen auf die Gefäßwand können sie die Salz-Wasser-Bilanz beeinflussen bzw. werden von ihr beeinflußt, wodurch eine enge Verbindung mit Kochsalz, dem wohl entscheidendsten Umweltfaktor für die Entstehung der essentiellen Hypertonie, hergestellt ist. Fortgesetzte Bemühungen um die Aufklärung insbesondere der renalen Pathomechanismen, die am Beginn der Blutdruckerhöhung im Kindes- und Jugendalter wirksam sind, werden das Verständnis der essentiellen Hypertonie verbessern und unter Umständen durch frühzeitige Intervention sogar die Prävention dieser Erkrankung ermöglichen.

Summary

Essential hypertension in infancy, once believed to occur rarely if ever, is now increasingly recognized as a potential precursor of essential hypertension in adulthood. The mechanisms responsible for hypertension in childhood and adolescence are only beginning to be delineated. Renal factors assumed to be operative in juvenile hypertension are involving either volume control (by renal regulation of sodium-chloride and water balance) or vasoactive substances like the kallikrein-kinin, the renin-angiotensin and the prostaglandin system and other less well defined hormones. There is a close interrelationship of all these hormones with each other as well as a close linking of these vasoactive compounds to the renal regulation of sodium-chloride and water balance, thus interfering with a major environmental factor necessary for the development of essential hypertension. At present, data are insufficient to delineate a single hormone or a single hemodynamic abnormality as the only primary factor in juvenile hypertension. Further research into the pathomechanisms responsible for the elevation of blood pressure at its very beginning will improve our understanding of hypertension and possibly benefit its management by early intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Abe K, Yasujima M, Ciba S, Irokawa N, Ito N, Yoshinaga K (1977) Effects of furosemide on urinary excretion of prostaglandin E in normal volunteers and patients with essential hypertension. Prostaglandins 14:513–521

    PubMed  Google Scholar 

  2. Ahnfelt-Rønne I, Arrigoni-Martelli E (1978) Increased PGF synthesis in renal papilla of spontaneously hypertensive rats. Biochem Pharmacol 27:2363–2367

    PubMed  Google Scholar 

  3. Bailie MD, Matioli LF (1980) Hypertension: Relationships between pathophysiology and therapy. J Pediat 96:789–797

    PubMed  Google Scholar 

  4. Bianchi G, Gatti M, Ferrari P, Picotti GB, Colombo G, Velis O, Cusi D, Lupi GP, Barlassina C, Bracchi G, Gori D, Mazzei D (1979) A renal abnormality as a possible cause of “essential hypertension”. Lancet 1:173–177

    PubMed  Google Scholar 

  5. Birkenhäger WH, de Leeuw PW (1979) Pathophysiologic mechanisms in essential hypertension. Pharmac Ther 8:297–319

    Google Scholar 

  6. Birkle DL, Ellis CK, Ellis EF (1980) Norepinephrine inhibits 6-keto-PGF synthesis and stimulates PGF synthesis in feline cerebral cortex homogenates. Fed Proc 39:1103 (a)

    Google Scholar 

  7. Dunn MJ, Hood VL (1977) Prostaglandins and the kidney. Am J Physiol 233:F169-F184

    Google Scholar 

  8. Fasola AF, Martz BL, Helmer OM (1968) Plasma renin activity during supine exercise in offspring of hypertensive parents. J Appl Physiol 25:410–415

    Google Scholar 

  9. Favaro S, Baggio B, Antonello A, Zen A, Cannella G, Todesco S, Borsatti A (1975) Renal kallikrein content of spontaneously hypertensive rats. Clin Sci Mol Med 49:69–71

    PubMed  Google Scholar 

  10. Grim CE, Luft FC, Miller JZ, Brown PL, Gannon MA, Weinberger MH (1979) Effects of sodium-loading and depletion in normotensive first-degree relatives of essential hypertensives. J Lab Clin Med 94:764–771

    PubMed  Google Scholar 

  11. Grim CE, Miller JZ, Luft FC, Christian JC, Weinberger MH (1979) Genetic influences on renin, aldosterone, and the renal excretion of sodium and potassium following volume expansion and contraction in normal man. Hypertension 1:583–590

    PubMed  Google Scholar 

  12. Hollenberg NK, Adams DF (1976) The renal circulation in hypertensive disease. Am J Med 60:773–784

    PubMed  Google Scholar 

  13. Ignatowska-Switalska H, Klonowicz T, Feltynowski T (1979) The effect of mental stress on prostaglandin F in patients with essential hypertension and in healthy subjects. Clin Sci 57:275s-277s

    PubMed  Google Scholar 

  14. Iwai J, Dahl LK, Knudsen KD (1973) Genetic influence on the renin-angiotensin-system: low renin activities in hypertension-prone rats. Circulation Res 32:678–684

    PubMed  Google Scholar 

  15. Kaplan NM (1978) Essential hypertension. In: Kaplan NM (ed) Clinical hypertension. Williams and Wilkins, Baltimore, pp 44–93

    Google Scholar 

  16. Karr-Dullien V, Bloomquist E (1979) The influence of prenatal salt on the development of hypertension by spontaneously hypertensive rats. Proc Soc Exp Biol Med 160:421–425

    PubMed  Google Scholar 

  17. Lee J, Lauer RM (1978) Pediatric aspects of atherosclerosis and hypertension. Pediat Clin N Am 25:909–929

    PubMed  Google Scholar 

  18. Lieberman E (1974) Essential hypertension in children and youth: A pediatric perspective. J Pediat 85:1–11

    PubMed  Google Scholar 

  19. Loggie JMH, New MI, Robson AM (1979) Hypertension in the pediatric patients: A reappraisal. J Pediat 94:685–699

    PubMed  Google Scholar 

  20. Londe S, Goldring D (1976) High blood pressure in children: Problems and guidelines for evaluation and treatment. Am J Cardiol 37:650–657

    PubMed  Google Scholar 

  21. McGiff JC, Vane JR (1975) Prostaglandins and the regulation of blood pressure. Kidney Int 8:262, 270

    Google Scholar 

  22. Nasjletti A, Malik KU (1979) Relationships between the kallikrein-kinin and prostaglandin systems. Life Sci 25:99–110

    PubMed  Google Scholar 

  23. Nekrasova AA, Sokolova RN, Levitskaya Y, Speranskaya NV, Kulagina VP, Leghonkaya NP (1980) Prostaglandins of blood vessels and vessel reactivity in rats receiving sodium-chloride and indomethacin. In: Samuelsson B, Ramwell PW, Paoletti R (eds) Advances in prostaglandin and thromboxane research, Vol 7. Raven Press, New York, pp 1139–1143

    Google Scholar 

  24. Pazdral PT, Lieberman HM, Pazdral WE, Neumann C, Lieberman E (1976) Awareness of pediatric hypertension: Measuring blood pressure. JAMA 235:2320–2322

    PubMed  Google Scholar 

  25. Pietinen PI, Wong O, Altschul AM (1979) Electrolyte output, blood pressure, and family history of hypertension. Am J Clin Nutr 32:997–1005

    PubMed  Google Scholar 

  26. Report of the hypertension task force, Vol 6: Current research and recommendations from the task force subgroups on pediatrics and genetics (1979) NIH Publication No 79–1628. US Government printing office

  27. Rosner B, Hennekens CH, Kass EH, Miall WE (1977) Age-specific correlation analysis of longitudinal blood pressure data. Am J Epidemiol 106:306–313

    PubMed  Google Scholar 

  28. Schachter J, Kuller LH, Perkins JM, Rodin ME (1979) Infant blood pressure and heart rate: Relation to ethnic group (black or white), nutrition and electrolyte intake. Am J Epidemiol 110:205–218

    PubMed  Google Scholar 

  29. Schalekamp MADH, Birkenhäger WH, Laal GA, Kolsters W (1977) Hemodynamic characteristics of low-renin hypertension. Clin Sci Mol Med 52:405–412

    PubMed  Google Scholar 

  30. Scherer B, Weber PC (1979) Time-dependent changes in prostaglandin excretion in response to frusemide in man. Clin Sci 56:77–81

    PubMed  Google Scholar 

  31. Scherer B, Held E, Lange HH, Weber PC (1979) Reduced urinary prostaglandin E2 excretion and diminished responsiveness of plasma renin activity in patients with essential hypertension. Klin Wochenschr 57:567–573

    PubMed  Google Scholar 

  32. Scherer B, Weber PC (1980) Urinary prostaglandins in the newborn: Relationship to urinary osmolality, urinary potassium and blood pressure. In: Samuelsson B, Ramwell PW, Paoletti R (eds) Advances in prostaglandin and thromboxane research, Vol 7. Raven Press, New York, pp 1033–1038

    Google Scholar 

  33. Scherer B, Friedmann B, Dumbs A, Weber PC (1980) Renal prostaglandins and blood pressure during the first week of life in man. In: Giovanelli G (ed) Juvenile hypertension. Raven Press, New York (in press)

    Google Scholar 

  34. Shibouta Y, Inada Y, Terashita Z, Nishikawa K, Kikuchi S, Shimamoto K (1979) Angiotensin-II-stimulated release of thromboxane A2 and prostacyclin (PGI2) in isolated, perfused kidneys of spontaneously hypertensive rats. Biochem Pharmacol 28:3601–3609

    PubMed  Google Scholar 

  35. Swales JD (1980) Dietary salt and hypertension. Lancet 1:1177–1179

    PubMed  Google Scholar 

  36. de Swiet M, Fayers P, Shinebourne EA (1980) Value of repeated blood pressure measurements in children. The Brompton study. Br Med J 1:1567–1569

    Google Scholar 

  37. Weber PC, Larsson C, Änggard E, Hamberg M, Corey EJ, Nicolaou KC, Samuelsson B (1976) Stimulation of renin release from rabbit renal cortex by arachidonic acid and prostaglandin endoperoxides. Circulation Res 39:867–874

    Google Scholar 

  38. Weber PC, Larsson C, Scherer B (1977) Prostaglandin-E2-9-ketoreductase as a mediator of salt intake related prostaglandin-renin interaction. Nature 266:65–66

    Google Scholar 

  39. Weber PC, Scherer B, Lange HH, Held E, Schnermann J (1978) Renal prostaglandins and renin release: Relationship to regulation of electrolyte excretion and blood pressure. Proc VIIth International Congress of Nephrology, Montreal 1978. Karger, Basel, pp 99–106

    Google Scholar 

  40. Wollheim E, Arnold M, Peterknecht S, Dees C, Wollheim CB (1979) A new test for the diagnosis of genetic hypertension in man. In: Yamori Y, Lovenberg W, Freis ED (eds) Prophylactic approach to hypertensive diseases. Raven Press, New York

    Google Scholar 

  41. Zinner SH, Margolius HS, Rosner B, Kass EH (1978) Stability of blood pressure rank and urinary kallikrein concentration in childhood: An eight-year follow-up. Circulation 58:908–915

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Deutsche Forschungsgemeinschaft

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scherer, B., Weber, P.C. Renal factors in juvenile hypertension. Klin Wochenschr 58, 1099–1104 (1980). https://doi.org/10.1007/BF01476880

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01476880

Schlüsselwörter

Key words

Navigation