Skip to main content
Log in

The regulation of protein synthesis in heart muscle under normal conditions and in the adriamycin-cardiomyopathy

Die Regulation der Herzmuskel-Proteinsynthese unter normalen Bedingungen und bei der Adriamycin-Kardiomyopathie

  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

The regulation of cardiac protein synthesis, in particular messenger-RNA (mRNA) and polyribosome metabolism, has been investigated in normal rat heart muscle and in the adriamycin-cardiomyopathy by using newly developed methods for the isolation, characterization and in-vitro translation of cardiac polyribosomes and mRNA. The obtained data allow the following conclusions:

  1. 1.

    Normal heart muscle has a high content of polyribosomes (865 µg/g) and of mRNA (20–60 µg/g), and thus a high rate of protein synthesis.

  2. 2.

    The level of cardiac polyribosomes and mRNA is strictly age-dependent and much higher in young animals (2–3 ×). This corresponds to a higher cardiac protein synthesis rate in young animals with a growing heart muscle, and shows that the protein-synthetic reserves of heart muscle decrease sharply with age.

  3. 3.

    Withdrawal of food for 1–3 days results in a pronounced decrease (−50% to −70%) of cardiac polyribosomes and mRNA, demonstrating that the cardiac protein synthesis reacts very sensitively to conditions of starving.

  4. 4.

    The cardiac polyribosomes and mRNA are unevenly distributed in the myocyte. The bulk of these substances is present in the cardiac microsomes, and much less is found in nuclei, myofibrils, mitochondria and in the post-microsomal fraction (=cell-sap) of the cardiac muscle. This shows that the major intracellular site of cardiac protein synthesis is the microsomal fraction of the myocyte.

  5. 5.

    A pool of untranslated mRNA was demonstrated to be present in the cell-sap of the myocyte. This mRNA is to some extent translatable in-vitro and appears to represent mRNA sub-pools with two functions: a) mRNA which is partially broken down or in the process of being broken down, and b) intact mRNA which could have a “reserve-function”, e.g., by being utilized to increase cardiac protein synthesis under certain conditions.

  6. 6.

    A method of quantitating small amounts of cardiac mRNA (25–50 ng) has been developed which makes it possible to estimate the mRNA content of cardiac biopsies.

  7. 7.

    These methods were utilized to study the relevance of changes in RNA- and protein synthesis in the development of the adriamycin-cardiomyopathy. It appears that severe decreases in cardiac mRNA and polyribosome levels are a key factor in the pathogenesis of the adriamycin-cardiomyopathy. These decreases are probably caused by the direct binding of adriamycin to cardiac DNA and lead themselves to a persisting decrease in cardiac protein synthesis which in view of the short half-lives of the cardiac contractile proteins (5–12 days) causes a gradual loss of cardiac structure and function.

Zusammenfassung

Die Regulation der myokardialen Proteinsynthese, insbesondere der Messenger-RNS (mRNS) und Polyribosomen Metabolismus, wurden in normalem Rattenherzmuskel und in der Adriamycin-Kardiomyopathie untersucht. Dabei wurden neu-entwickelte Methoden zur Isolierung, Charakterisierung und in-vitro Translation myokardialer Polyribosomen und mRNS eingesetzt. Die erhaltenen Ergebnisse erlauben folgende Folgerungen:

  1. 1.

    Normaler Herzmuskel hat einen hohen Gehalt an Polyribosomen und mRNS und daher eine hohe Proteinsyntheserate.

  2. 2.

    Der Gehalt des Herzmuskels an Polyribosomen und mRNS ist stark altersabhängig und wesentlich höher bei jungen Tieren (2–3×). Dies entspricht der höheren Proteinsyntheserate des wachsenden Herzmuskels junger Tiere und zeigt, daß die Proteinsynthesereserven des Herzmuskels mit steigendem Alter stark abnehmen.

  3. 3.

    Nahrungsentzug für 1–3 Tage führt zu einer ausgeprägten Abnahme (−50% bis −70%) der myokardialen Polyribosomen und mRNS und unterstreicht die Empfindlichkeit der Herzmuskel-Proteinsynthese hinsichtlich auch nur kurzer Hungerperioden.

  4. 4.

    Die intrazelluläre Verteilung der myokardialen Polyribosomen und mRNS ist sehr ungleichmäßig: Die große Mehrzahl dieser Substanzen befindet sich in der Mikrosomenfraktion des Herzmuskels; Zellkerne, Myofibrillen, Mitochondrien und der post-mikrosomale Überstand (=Zellsaft) enthalten nur jeweils geringe Mengen. Dies zeigt, daß der intrazelluläre Hauptort der myokardialen Proteinsynthese in der Mikrosomenfraktion des Herzmuskels liegt.

  5. 5.

    Ein Pool nicht-translatierter mRNS wurde von uns im Zellsaft des Herzmuskels nachgewiesen. Diese mRNS kann in-vitro teilweise translatiert werden und scheint sich aus zwei Fraktionen zusammenzusetzen: a) mRNS, die gerade abgebaut wird oder schon abgebaut ist, und b) intakte mRNS, die eine „Reserve-Funktion“ wahrnehmen könnte, z.B. durch Stimulierung der myokardialen Proteinsynthese unter bestimmten Bedingungen.

  6. 6.

    Durch eine neu-entwickelte Methode kann myokardiale mRNS in geringen Mengen (25–50 ng) quantifiziert werden. Dies eröffnet die Möglichkeit, den mRNS-Gehalt von Herzmuskelbiopsien zu bestimmen.

  7. 7.

    Diese Methoden wurden zur Überprüfung der Frage eingesetzt, inwieweit Veränderungen der RNS-und Proteinsynthese bei der Entstehung der Adriamycin-Kardiomyopathie eine Rolle spielen könnten. Unsere Daten lassen den Schluß zu, daß ausgeprägte Abnahmen der myokardialen mRNS- und Polyribosomenspiegel eine entscheidende Rolle bei der Pathogenese der Adriamycin-Kardiomyopathie spielen. Diese Abnahmen sind wahrscheinlich durch eine direkte Bindung von Adriamycin an die myokardiale DNS bedingt und führen ihrerseits zu einer persistierenden Abnahme der myokardialen Proteinsynthese, die aufgrund der kurzen Halbwertszeit der myokardialen Proteine (5–12 Tage) einen allmählichen Verlust der strukturellen und funktionellen Integrität des Myokards zur Folge hat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arena E, Biondo F, D'Alessandro N, Dusonchet L, Gebbia N, Gerbasi F, Rausa L, Sangueldolce R (1974) DNA, RNA and protein synthesis in heart, liver and brain of mice treated with daunomycin or adriamycin. IRCS Libr Compend 2:1053

    Google Scholar 

  2. Aviv H, Leder P (1972) Purification of biologically active globin mRNA by chromatography on oligothymidylic acid cellulose. Proc Natl Acad Sci USA 69:1408–1412

    Google Scholar 

  3. Atwood G, Boerth R, Dunkley S (1977) Effects of adriamycin on myocardial Na-K-ATPase. Circulation 56:III 157

    Google Scholar 

  4. Bachur N, Moore A, Bernstein J, Liu A (1970) Tissue distribution and disposition of daunomycin (NSC-82151) in mice: fluorometric and isotopic methods. Cancer Chemother Rep 54:89–94

    Google Scholar 

  5. Bag J, Sarkar S (1975) Cytoplasmic nonpolysomal messenger ribonucleoprotein containing actin messenger RNA in chicken embryonic muscles. Biochemistry 14:3800–3807

    Google Scholar 

  6. Baliga B, Pronczuk A, Munro H (1968) Regulation of polysome aggregation in a cell-free system through amino acid supply. J Mol Biol 34:199–218

    Google Scholar 

  7. Baliga B, Zähringer J, Trachtenberg M, Moskowitz M, Munro H (1976) Mechanism of D-Amphetamin inhibition of protein synthesis. Biochim Biophys Acta 442:239–250

    Google Scholar 

  8. Bantle J, Hahn W (1976) Complexity and characterization of polyadenylated RNA in the mouse brain. Cell 8:139–150

    Google Scholar 

  9. Blobel G, Potter V (1967) Studies on free and membrane-bound ribosomes in rat liver. J Mol Biol 26:279–292

    Google Scholar 

  10. Blum R, Carter S (1974) A new anticancer drug with significant clinical activity. Ann Intern Med 80:249–259

    Google Scholar 

  11. Bonner W, Laskey R (1974) A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem 46:83–88

    Google Scholar 

  12. Brawerman G (1974) Eukaryotic messenger RNA. Ann Rev Biochem 43:621–642

    Google Scholar 

  13. Buja L, Ferrans V, Mayer R, Roberts W, Henderson E (1973) Cardiac ultrastructural changes induced by daunorubicin therapy. Cancer 32:771–788

    Google Scholar 

  14. Calendi F, DiMarco A, Reggiani M, Scarpinato B, Valentini L (1965) On physico-chemical interactions between daunomycin and nucleic acids. Biochim Biophys Acta 103:25–49

    Google Scholar 

  15. Chan S, Keim P, Steiner D (1976) Cell-free synthesis of rat preproinsulins: Characterization and partial amino acid sequence determination. Proc Natl Acad Sci USA 73:1964–1968

    Google Scholar 

  16. Clarke L, Carbon J (1975) Biochemical construction and selection of hybrid plasmids containing specific segments of the Escherichia coli genome. Proc Natl Acad Sci USA 72:4361–4365

    Google Scholar 

  17. Cox R, Haines M, Emtage J (1974) Quantitation of ovalbumin mRNA in hen and chick oviduct by hybridization to complementary DNA. Eur J Biochem 49:225–236

    Google Scholar 

  18. Darnell S (1976) mRNA structure and function. In: Cohn W, Volkin E (eds) Progress in nucleic acid research and molecular biology, vol 19. Academic Press, New York San Francisco London, pp 493–511

    Google Scholar 

  19. DiMarco A (1967) Daunomycin pharmacological activity at the cellular level. Path Biol 15:897–902

    Google Scholar 

  20. Driscoll H, Crim M, Zähringer J, Munro H (1978) Hepatic synthesis and urinary excretion of α2u-globulin by male rats: diurnal rhythm and response to fasting and refeeding. J Nutr 108:1691–1701

    Google Scholar 

  21. Ferrans V, Hermann E (1978) Cardiomyopathy induced by antineoplastic drugs. In: Kaltenbach M, Loogen F, Olson E (eds) Cardiomyopathy and myocardial biopsy. Springer, Berlin Heidelberg New York, pp 12–26

    Google Scholar 

  22. Fialkoff H, Goodman M, Seraydarian M (1979) Differential effect of adriamycin on DNA replicative and repair synthesis in cultured neonatal rat cardiac cells. Cancer Res 39:1321–1327

    Google Scholar 

  23. Formelli F, Zedeck M, Sternberg S, Philips F (1978) Effect of adriamycin on DNA synthesis in mouse and rat heart. Cancer Res 38:3286–3292

    Google Scholar 

  24. Gamulin S, Gray H, Norman M (1972) Comparison of methods for preparing polysomes free of glycogen. Biochim Biophys Acta 259:239–242

    Google Scholar 

  25. Gedamu L, Iatrou K, Dixon G (1977) Isolation and characterization of trout testis protamine mRNAs lacking Poly(A). Cell 10:443–451

    Google Scholar 

  26. Gillespie D, Marshall S, Gallo R (1972) RNA of RNA tumour viruses contains Poly(A). Nature 236:227–231

    Google Scholar 

  27. Gosalvez M, Blanco M, Hunter J, Miko M, Chance B (1974) Effects of anticancer agents on the respiration of isolated mitochondria and tumer cells. Eur J Cancer 10:567–574

    Google Scholar 

  28. Herrmann R (1974) Die Adriamycin-Kardiomyopathie. Dtsch Med Wochenschr 102:1820–1822

    Google Scholar 

  29. Heywood S, Dowben R, Rich A (1967) The identification of polyribosomes synthesizing myosin. Proc Natl Acad Sci USA 57:1002–1009

    Google Scholar 

  30. Hjalmarson A, Rannels E, Kao R, Morgan H (1975) Effects of hypophysectomy, growth hormone and thyroxine on protein turnover in heart. J Biol Chem 250:4556–4561

    Google Scholar 

  31. Irwin D, Kumar A, Malt R (1975) Messenger ribonucleoprotein complexes isolated with oligo-dT-cellulose chromatography from kidney polysomes. Cell 4:157–165

    Google Scholar 

  32. Iwamoto Y, Hansen I, Porter T, Folkers K (1974) Inhibition of coenzyme Q10-enzymes, succinoxidase and NADH-oxydase by adriamycin and other quinones having antitumor activity. Biochem Biophys Res Commun 58:633–638

    Google Scholar 

  33. Jaenke R (1976) Delayed and progressive myocardial lesions after adriamycin administration in the rabbit. Cancer Res 36:2958–2966

    Google Scholar 

  34. Jeffery W, Brawerman G (1974) Characterization of the steady-state population of messenger RNA and its Poly(adenylic acid) segment in mammalian cells. Biochemistry 13:4633–4637

    Google Scholar 

  35. Kabat D (1975) Potentiation of hemoglobin messenger ribonucleic acid. J Biol Chem 250:6085–6092

    Google Scholar 

  36. Kacian D, Myers J (1976) Synthesis of extensive, possibly complete, DNA copies of polio virus RNA in high yields and at high specific activities. Proc Natl Acad Sci USA 73:2191–2195

    Google Scholar 

  37. Kacian D, Spiegelman S, Bank A, Terada M, Metafora S, Dow L, Marks P (1972) In vitro synthesis of DNA components of human genes for globins. Nature New Biol 235:167–169

    Google Scholar 

  38. Kaufman S, Gross K (1974) Quantitation and size determination of Poly(A) by hybridization to (3H)Poly(dT). Biochim Biophys Acta 353:133–145

    Google Scholar 

  39. Koebel F, Mommaerts W, Vancura P, Kölblova V (1970) Cardiac muscle and liver ribosomes of the rat: the influence of laparotomy combined with adrenalectomy. Experientia 26:361–362

    Google Scholar 

  40. Lee D, McKnight G, Palmiter R (1978) The action of estrogen and progesterone on the expression of the transferrin gene. J Biol Chem 253:3494–3503

    Google Scholar 

  41. Lefrak E, Pitha J, Rosenheim S, Gottlieb J (1973) A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer 32:302–314

    Google Scholar 

  42. Lenaz L, Page J (1976) Cardiotoxicity of adriamycin and related anthracyclines. Cancer Treat Rev 3:111–120

    Google Scholar 

  43. Lowry O, Rosebrough N, Farr A, Randall R (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  44. Mans R, Novelli G (1961) Measurement of the incorporation of radioactive amino acids into protein by a filter-paper disc method. Arch Biochem Biophys 94:48–53

    Google Scholar 

  45. McKeehan W (1974) Regulation of hemoglobin synthesis. J Biol Chem 249:6517–6526

    Google Scholar 

  46. McKnight G, Schimke R (1974) Ovalbumin messenger RNA: Evidence that the initial product of transcription is the same size as polysomal ovalbumin messenger. Proc Natl Acad Sci USA 71:4327–4331

    Google Scholar 

  47. Means A, Woo S, Harries S, O'Malley B (1975) Estrogen induction of ovalbumin mRNA: evidence for transcription control. Mol Cell Biochem 7:33–42

    Google Scholar 

  48. Meerson F, Iavich M, Lerman M (1974) Role of total ribonucleic acid concentration and the ratio of translating and nontranslating ribosomes in development of compensatory hypertrophy of the heart. Circ Res [Suppl III] 34:43–49

    Google Scholar 

  49. Minow R, Benjamin R, Gottlieb J (1975) Adriamycin cardiomyopathy — an overview with determination of risk factors. Cancer Chemother Rep 6:195–201

    Google Scholar 

  50. Mondal H, Sutton A, Chen V, Sarkar S (1974) Highly purified mRNA for myosin heavy chain: size and polyadenylic acid content. Biochem Biophys Res Commun 56:988–996

    Google Scholar 

  51. Morgan H, Jefferson L, Wolpert E, Rannels D (1971) Regulation of protein synthesis in heart muscle. II. Effects of amino acid levels and insulin on ribosomal aggregation. J Biol Chem 246:2163–2170

    Google Scholar 

  52. Munro H, Hubert C, Baliga B (1975) Regulation of protein synthesis in relation to amino acid supply — A review. In: Rothschild M, Oratz M, Schreiber S (eds) Alcohol and abnormal protein biosynthesis. Pergamon Press, New York, pp 33–66

    Google Scholar 

  53. Munro H, McLean E, Hird H (1964) Effect of protein intake on the ribonucleic acid of liver cell sap. J Nutr 83:186–192

    Google Scholar 

  54. Myers C, McGuire W, Young R (1976) Adriamycin: amelioration of toxicity by α-tocopherol. Cancer Treat Rep 60:961–962

    Google Scholar 

  55. Myers C, McGuire W, Liss R, Ifrim I, Grotzinger K, Young R (1977) Adriamycin: the role of lipid peroxidation in cardiac toxicity and tumor response. Science 197:165–167

    Google Scholar 

  56. Nayaranan N, Eapen J (1973) Protein synthesis by rat cardiac muscle myofibrils. Biochim Biophys Acta 512:413–425

    Google Scholar 

  57. Olson H, Young D, Prieur D, LeRoy A, Reagan R (1974) Electrolyte and morphologic alterations of myocardium in adriamycin-treated rabbits. Am J Pathol 77:455–466

    Google Scholar 

  58. Ouellette A, Kumar A, Malt R (1976) Physical aspects and cytoplasmic distribution of messenger RNA in mouse kidney. Biochim Biophys Acta 425:384–395

    Google Scholar 

  59. Palmiter R (1975) Quantitation of parameters that determine the rate of ovalbumin synthesis. Cell 4:189–197

    Google Scholar 

  60. Pelham R, Jackson R (1976) An efficient mRNA-dependent translation system from reticulocyte lysates. Eur J Biochem 67:247–256

    Google Scholar 

  61. Perry R (1976) Processing of RNA. Ann Rev Biochem 45:605–629

    Google Scholar 

  62. Posner B, Mierzwinski L, Fallen E (1973) Studies on amino acid levels and transport in the mechanically stressed rat heart. J Mol Cell Cardiol 5:221–233

    Google Scholar 

  63. Przybyla A, Strohman R (1974) Myosin heavy chain messenger RNA from myogenic cell cultures. Proc Natl Acad Sci USA 71:662–666

    Google Scholar 

  64. Ramsey J, Steele W (1976) A procedure for the quantitative recovery of homogeneous populations of undegraded free and bound polysomes from rat liver. Biochemistry 15:1704–1712

    Google Scholar 

  65. Roberts B, Paterson B (1973) Efficient translation of tobacco masaic virus RNA and rabbit globin 9S RNA in a cell-free system from commercial wheat germ. Proc Natl Acad Sci USA 70:2330–2334

    Google Scholar 

  66. Rosbash M, Ford P (1974) Polyadenylic acid-containing RNA in Xenopus laevis oocytes. J Mol Biol 85:87–101

    Google Scholar 

  67. Rosenoff S, Olson H, Young D, Bostick F, Young R (1971) Alterations in DNA synthesis in cardiac tissue induced by adriamycin in-vitro — relationship to fatal toxicity. Biochem Pharmacol 24:1898–1901

    Google Scholar 

  68. Ross J, Aviv H, Scolnick E, Leder P (1972) In vitro synthesis of DNA complementary to purified rabbit globin mRNA. Proc Natl Acad Sci USA 69:264–268

    Google Scholar 

  69. Sala-Trepat J, Savage M, Bonner J (1978) Isolation and characterization of poly(adenylic acid)-containing messenger ribonucleic acid from rat liver polysomes. Biochim Biophys Acta 519:173–193

    Google Scholar 

  70. Sarkar S, Mukherjee S, Sutton A, Mondal H, Chen V (1973) Isolation of messenger ribonucleic acid for myosin heavy chain. Prep Biochem 3:583–604

    Google Scholar 

  71. Seraydarian M, Artaza L, Goodman M (1977) Adriamycin: effect on mammalian cardiac cells in culture I. Cell population and energy metabolism. J Mol Cell Cardiol 9:375–382

    Google Scholar 

  72. Shine J, Seeburg P, Martial J, Baxter J, Goodman H (1977) Construction and analysis of recombinant DNA for human chorionic somatomammotropin. Nature 270:494–499

    Google Scholar 

  73. Sippel A, Stavrianopoulos J, Schutz G, Feigelson P (1974) Translational properties of rabbit globin mRNA after specific removal of Poly(A) with ribonuclease H. Proc Natl Acad Sci USA 71:4635–4639

    Google Scholar 

  74. Stevens R, Williamson A (1973) Isolation of messenger RNA coding for mouse heavy-chain immunoglobin. Proc Natl Acad Sci USA 70:1127–1131

    Google Scholar 

  75. Taylor J (1979) The isolation of eukaryotic messenger RNA. Ann Rev Biochem 48:681–717

    Google Scholar 

  76. Therwarth A, Soriano P, Scherrer K (1980) Analysis of adult duck α and β globin c-DNA recombinant plasmids. Biochemistry Int 1:32–40

    Google Scholar 

  77. Ullrich A, Shine J, Chirgwin J, Pictet R, Tischer E, Rutter W, Goodman H (1977) Rat insulin genes: construction of plasmids containing the coding sequences. Science 196:1313–1319

    Google Scholar 

  78. Verma J, Temple G, Fan H, Baltimore D (1972) In vitro synthesis of DNA complementary to rabbit reticulocyte 10S RNA. Nature New Biol 235:163–167

    Google Scholar 

  79. Verma J, Temple G, Fan H, Baltimore D (1974) Synthesis by reverse transcriptase of DNA complementary to globin messenger RNA. In: Biswas B, Mandal R, Stevens A, Cohn W (eds) Control of transcription. Plenum Press, New York London, pp 355–372

    Google Scholar 

  80. Von Hoff D, Rosencweig N, Layard M, Slavik M, Miggia F (1977) Daunomycin-induced cardiotoxicity in children and adults. Am J Med 62:200–208

    Google Scholar 

  81. Wall R, Lippmann S, Toth K, Fedoroff N (1977) A general method for the large-scale isolation of polysomes and messenger RNA applied to MOPC 21 mouse myeloma tumors. Anal Biochem 82:115–129

    Google Scholar 

  82. Woo S, Rosen J, Liarakos C, Choi Y, Busch H, Means A, O'Malley B, Robberson D (1975) Physical and chemical characterization of purified ovalbumin messenger RNA. J Biol Chem 250:7027–7039

    Google Scholar 

  83. Zak R, Rabinowitz M, Platt C (1967) Ribonucleic acids associated with myofibrils. Biochemistry 6:2493–2499

    Google Scholar 

  84. Zähringer J (1979) The regulation of protein synthesis in heart muscle. Klin Wochenschr 57:541–553

    Google Scholar 

  85. Zähringer J, Baliga B, Crim M, Munro H (1977) Heaptic synthesis of export proteins. In: Rosenoer V, Oratz M, Rothschild M (eds) Albumin structure, function and uses, Pergamon Press, Oxford, pp 203–225

    Google Scholar 

  86. Zähringer J, Baliga B, Drake R, Munro H (1977) Distribution of ferritin-mRNA and albumin-mRNA between free and membrane-bound rat liver polysomes. Biochim Biophys Acta 474:234–244

    Google Scholar 

  87. Zähringer J, Baliga B, Munro H (1976) Novel mechanism for translational control in regulation of ferritin synthesis by iron. Proc Natl Acad Sci USA 73:857–861

    Google Scholar 

  88. Zähringer J, Baliga B, Munro H (1976) Subcellular distribution of total Poly(A)-containing RNA and ferritin-mRNA in the cytoplasm of rat liver. Biochem Biophys Res Commun 68:1088–1093

    Google Scholar 

  89. Zähringer J, Baliga B, Munro H (1976) Increased levels of microsomal albumin-mRNA in the liver of nephrotic rats. FEBS-Lett 62:322–325

    Google Scholar 

  90. Zähringer J, Höfling B (1980) Adriamycin-cardiomyopathy: changes in myocardial polyribosome and mRNA-levels. In: Bolte H (ed) Myocardial biopsy. Springer, Berlin Heidelberg New York, pp 119–130

    Google Scholar 

  91. Zähringer J, Konijn A, Baliga B, Munro H (1975) Mechanism of iron induction of ferritin synthesis. Biochem Biophys Res Commun 65:583–590

    Google Scholar 

  92. Zähringer J, Höfling B, Raum W, Kandolf R (1980) Effect of adriamycin on the polyribosome and messenger-RNA content of rat heart muscle. Biochim Biophys Acta 608:315–323

    Google Scholar 

  93. Zähringer J, Kandolf R, Raum W (1981) Decrease of myocardial messenger-RNA in adriamycin-treated rats. FEBS-Lett 123:169–172

    Google Scholar 

  94. Zähringer J, Kandolf R, Raum W, Troesch G, Stäb G, Jäger E (1981) Isolation and characterization of structurally and functionally intact polyribosomes and mRNA from rat heart muscle. J Mol Cell Cardiol 13:127–146

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is a concised review of the experiments presented at the VIIth European Congress of Cardiology (Paris, June 22–26, 1980) for the “Young Investigator's Price 1980” of the European Society of Cardiology

This study was supported by grants Za 58/3 and Za 58/5 from the Deutsche Forschungsgemeinschaft, and by grant Za 1 from the Wilhelm-Sander-Stiftung

Parts of this study have already been published

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zähringer, J. The regulation of protein synthesis in heart muscle under normal conditions and in the adriamycin-cardiomyopathy. Klin Wochenschr 59, 1273–1287 (1981). https://doi.org/10.1007/BF01711177

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01711177

Key words

Schlüsselwörter

Navigation