Skip to main content
Log in

Arachidonic acid metabolites, hypertension and arteriosclerosis

Arachidonsäure-Metaboliten, Hypertonie und Arteriosklerose

  • Übersichten
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

The level of arterial blood pressure is set by complex interactions of several mechanisms which influence both blood flow in and resistance of the vascular system. An imbalance favouring elevation of vascular resistance or extracellular volume will result in hypertension. Such alterations may include increased activity of the sympathetic nervous system, of the renin-angiotensin system, or excessive secretion of mineralocorticoids. Of equal importance may be a reduced activity of blood pressure-lowering factors such as prostaglandins and the kallikrein-kinin system. This paper describes the possible significance of prostaglandins in the pathophysiology of hypertension and in degenerative vascular disease, based on their involvement in the control of vascular resistance, renal regulation of extracellular volume and plateletvessel wall interactions. An abnormality in the biosynthesis of certain prostaglandin endoperoxide metabolites may lead to hypertension even without an increase in the activity of the classic blood-pressure-elevating systems. The contribution of prostaglandins for the development of hypertension and degenerative vascular disease may be based on an inherent abnormality of the prostaglandin system, as well as on the effects of major risk factors such as dietary intake of sodium and fat on prostaglandin synthesis. Specific blockade or stimulation of distinct biosynthetic pathways leading to antagonistically acting prostaglandins and nutritional manipulation of precursor fatty acids should lead to a better understanding of the pathomechanisms involved and may offer new strategies for therapy or prevention of these cardiovascular disorders.

Zusammenfassung

Die Blutdruckhöhe wird durch komplexe Wechselwirkungen verschiedener Mechanismen bestimmt, die sowohl den Blutfluß als auch den Widerstand des Gefäßsystems beeinflussen. Ein Übergewicht der Faktoren, die den Gefäßwiderstand oder das Extrazellulärvolumen vergrößern, führt zu einem Anstieg des Blutdrucks. Solch ein Ungleichgewicht kann z.B. durch eine erhöhte Aktivität des sympathischen Nervensystems und des Renin-Angiotensin-Systems oder durch eine gesteigerte Mineralocorticoid-Sekretion verursacht sein. Ebenso könnte eine verminderte Aktivität blutdrucksenkender Faktoren wie der Prostaglandine oder des Kallikrein-Kinin-Systems zu einem Anstieg des Blutdrucks führen. In dieser Arbeit wird die mögliche Rolle der Prostaglandine für die Pathophysiologie der essentiellen Hypertonie und degenerativer Gefäßerkrankungen dargestellt, basierend auf der Beteiligung von Prostaglandinen an der Kontrolle des Gefäßwiderstandes, der renalen Regulation des Extrazellulärvolumens und der Thrombozyten-Gefäßwand-Wechselwirkung. Ein Ungleichgewicht der Synthese bestimmter Prostaglandin-Endoperoxid-Metabolite könnte zur Hochdruckentstehung beitragen, auch ohne Vorliegen einer erhöhten Aktivität der bekannten blutdrucksteigernden Faktoren. Dabei könnte die Beteiligung der Prostaglandine an der Entstehung von Hochdruck und degenerativer Gefäßerkrankung sowohl auf einer primären Abnormalität beruhen als auch in einer Mittlerrolle für bekannte Risikofaktoren wie hohe Kochsalz-und Fettzufuhr bestehen. Spezifische Blockade oder Stimulation bestimmter Biosynthesewege, die zu gegensätzlich wirksamen Prostaglandinen führen, oder Änderung der nutritiven Zufuhr von Prekursor-Fettsäuren sollte zu einem besseren Verständnis zugrunde liegender Pathomechanismen und zu neuen Ansatzpunkten für Therapie oder Prävention dieser Herz-Kreislauferkrankungen führen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abe K, Yasujima M, Irokawa N, Seino M, Chiba S, Sakurei Y, Sato M, Imai Y, Saito K, Ito T, Haruyama T, Otsuka Y, Yoshinaga K (1978) The role of intrarenal vasoactive substances in the pathogenesis of essential hypertension. Clin Sci Mol Med 55:363s-366s

    Google Scholar 

  2. Ahnfelt-Rønne I, Arrigoni-Martelli E (1978) Increased PGF synthesis in renal papilla of spontaneously hypertensive rats. Biochem Pharmacol 27:2363–2367

    PubMed  Google Scholar 

  3. Aspirin Myocardial Infarction Study Research Group (1980) A randomized controlled trial of aspirin in persons recovered from myocardial infarction. J Am Med Assoc 243:661–669

    Google Scholar 

  4. Bills TK, Smith JB, Silver MJ (1976) Metabolism of14C arachidonic acid by human platelets. Biochim Biophys Acta 424:303–314

    PubMed  Google Scholar 

  5. Brenneman DE, Kaduce T, Spector AA (1977) Effect of dietary fat saturation on acylcoenzyme A: cholesterol acyltransferase activity of Ehrlich cell microsomes. J Lipid Res 18:582–591

    PubMed  Google Scholar 

  6. Case DB, Casarella WJ, Laragh JH, Fowler DL, Canon PJ (1978) Renal cortical blood flow and angiography in low- and normal-renin essential hypertension. Kidney Int 13:236–244

    PubMed  Google Scholar 

  7. Chrysant SG, Townsend SM, Morgan PR (1978) The effects of salt and meclofenamate administration on the hypertension of spontaneously hypertensive rats. Clin Exp Hypertension 1:381–391

    Google Scholar 

  8. Ciabattoni G, Pugliese F, Cinotti GA, Stirati G, Ronci R, Castrucci G, Pierucci A, Patrono C (1979) Characterization of furosemide-induced activation of the renal prostaglandin system. Eur J Pharmacol 60:181–187

    PubMed  Google Scholar 

  9. Comberg HU, Heyden S, Hames CG, Vergroesen AJ, Fleischman AI (1978) Hypotensive effect of dietary prostaglandin precursor in hypertensive man. Prostaglandins 15:193–197

    PubMed  Google Scholar 

  10. Colina-Chourio J, McGiff J, Nasjletti A (1979) Effect of indomethacin on blood pressure in the normotensive unanaesthetized rabbit: possible relation to prostaglandin synthesis inhibition. Clin Sci 57:359–365

    PubMed  Google Scholar 

  11. Davila D, Davila T, Oliw E, Änggard E (1977) The influence of dietary sodium on urinary prostaglandin excretion. Acta Physiol Scand 103:100–106

    Google Scholar 

  12. Dougherty HJ Jr, Levy DE, Weksler BB (1977) Platelet activation in acute cerebral ischaemia. Lancet I:821–824

    Google Scholar 

  13. Dunn MJ, Hood VL (1977) Prostaglandins and the kidney. Am J Physiol 233:F-169–F-184

    Google Scholar 

  14. Dunn MJ, Liard JF, Dray F (1978) Basal and stimulated rates of renal secretion and excretion of prostaglandin E2, Fα, and 13,14-dihydro-15-keto-Fα in the dog. Kidney Int 13:136–143

    Google Scholar 

  15. Dyerberg J, Bang HO, Stoffersen E, Moncada S, Vane JR (1978) Eicosapentaenoic acid and prevention of thrombosis and atherosclerosis? Lancet II:117–119

    Google Scholar 

  16. Elwood PC, Cochrane AL, Burr ML, Sweetman PM, Welsby WG, Huges SJ, Renton R (1974) A randomized controlled trial of acetylsalicylic acid in the secondary prevention of mortality from myocardial infarction. Br Med J 1:436–440

    PubMed  Google Scholar 

  17. Fujita T, Henry WL, Bartter FC, Lake CR, Delea CS (1980) Factors influencing blood pressure in salt-sensitive patients with hypertension. Am J Med 69:334–344

    PubMed  Google Scholar 

  18. Gerber JG, Nies AS (1981) Interaction between furosemide-induced renal vasodilatation and the prostaglandin system. Prostaglandins Med 6:135–145

    PubMed  Google Scholar 

  19. Grose JH, Lebel M, Gbeassor FM (1980) Diminished urinary prostacyclin metabolite in essential hypertension. Clin Sci 59:121s-123s

    PubMed  Google Scholar 

  20. Hamberg M, Svennsson J, Samuelsson B (1975) Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci USA 72:2994–2998

    PubMed  Google Scholar 

  21. Haerem JW (1972) Platelet aggregates in intramyocardial vessels of patients dying suddenly and unexpectedly of coronary artery disease. Atherosclerosis 15:199–213

    PubMed  Google Scholar 

  22. Hedquist P (1976) Prostaglandin action on transmitter release at adrenergic neuroeffector junctions. In: Samuelsson B, Paoletti R (eds) Advances in prostaglandin and thromboxane research, Vol 1. Raven Press, New York, pp 357–363

    Google Scholar 

  23. Hollander W (1976) Role of hypertension in atherosclerosis and cardiovascular disease. Am J Cardiol 38:786–800

    PubMed  Google Scholar 

  24. Jaffe EA, Weksler BB (1979) Recovery of endothelial cell prostacyclin production after inhibition by low doses of aspirin. J Clin Invest 63:532–535

    PubMed  Google Scholar 

  25. Kernoff PBA, Willis AL, Stone KJ, Davies JA, McNicol GP (1977) Antithrombotic potential of dihomo-gamma-linolenic acid in man. Br Med J 2:1441–1444

    PubMed  Google Scholar 

  26. Lake CR, Ziegler MG, Coleman MD, Kopin IJ (1977) Age-adjusted plasma norepinephrine levels are similar in normotensive and hypertensive subjects. N Engl J Med 296:208–209

    PubMed  Google Scholar 

  27. Lee J, Laner RM (1978) Pediatric aspects of atherosclerosis and hypertension. Ped Clin N Am 25:909–929

    Google Scholar 

  28. Levin RI, Jaffe EA, Weksler BB, Tack-Goldmann K (1981) Nitroglycerin stimulates synthesis of prostacyclin by cultured human endothelial cells. J Clin Invest 67:762–769

    PubMed  Google Scholar 

  29. Levine L, Moskowitz MA (1979) α- and β-adrenergic stimulation of arachidonic acid metabolism in cells in culture. Proc Natl Acad Sci USA 76:6632–6636

    PubMed  Google Scholar 

  30. Lorenz R, Siess W, Weber PC (1981) Effects of very low versus standard dose acetylsalicylic acid, dipyridamole and sulfinpyrazone on platelet function and thromboxane formation in man. Eur J Pharmacol 70:511–518

    PubMed  Google Scholar 

  31. Lorenz R, Spengler U, Siess W, Weber PC (1980) Einfluß veränderter Prostaglandin-Bildung auf die sympathoadrenerge Aktivität und die Blutdruckregulation. Verh Dtsch Ges Inn Med 86:692–694

    Google Scholar 

  32. Luderer JR, Demers LM, Janson RW, Nomides CT, Hayes Jr AH (1980) The effect of hydralazine on arachidonic acid metabolism in isolated, washed human platelets. Res Commun Chem Pathol Pharmacol 28(1):43–52

    PubMed  Google Scholar 

  33. Lukacsko P, Messina EJ, Kaley G (1980) Reduced hypotensive action of arachidonic acid in the spontaneously hypertensive rat. Hypertension 2:657–663

    PubMed  Google Scholar 

  34. McGiff JC, Crowshaw K, Terragno NA, Lonigro AJ (1970) Release of a prostaglandin-like substance into renal venous blood in response to angiotensin II. Circ Res 26 and 27 [Suppl I]:121–130

    Google Scholar 

  35. Mehta J, Mehta P (1981) Platelet function in hypertension and effect of therapy. Am J Cardiol 47:331–334

    PubMed  Google Scholar 

  36. Mehta P, Mehta J (1979) Platelet function studies in coronary artery disease. V. Evidence for enhanced platelet microthrombus formation activity in acute myocardial infarction. Am J Cardiol 43:757–760

    PubMed  Google Scholar 

  37. Moncada S, Vane JR (1979) The role of prostacyclin in vascular tissue. Fed Proc 38:66–71

    PubMed  Google Scholar 

  38. Moncada S, Vane JR (1978) Unstable metabolites of arachidonic acid and their role in haemostasis and thrombosis. Br Med Bull 34:129–135

    PubMed  Google Scholar 

  39. Moore TJ, Crantz FR, Hollenberg NK, Koletsky RJ, Lebhoff MS, Swartz SL, Levine L, Podolsky S, Dluhy RG, Williams GH (1981) Contribution of prostaglandins to the antihypertensive action of captopril in essential hypertension. Hypertension 3:168–173

    PubMed  Google Scholar 

  40. Mullane KM, Moncada S (1980) Prostacyclin mediates the potentiated hypotensive effect of bradykinin following captopril treatment. Eur J Pharmacol 66:355–365

    PubMed  Google Scholar 

  41. Nasjletti A, Malik KU (1979) Relationships between the kallikreinkinin and prostaglandin systems. Life Sci 25:99–110

    PubMed  Google Scholar 

  42. Needleman Ph, Whitaker MO, Wyche A, Watters K, Sprecher H, Raz A (1980) Manipulation of platelet aggregation by prostaglandins and their fatty acid precursors: Pharmacological basis for a therapeutic approach. Prostaglandins 19:165–181

    PubMed  Google Scholar 

  43. Negus P, Tannen RL, Dunn MJ (1976) Indomethacin potentiates the vasoconstrictor actions of angiotensin II. Prostaglandins 12:175–180

    PubMed  Google Scholar 

  44. Nekrasova AA, Sokolova RN, Levitskaya Y, Speranskaya NV, Kulagina VP, Leghonkays NP (1980) Prostaglandins of blood vessels and vessel reactivity in rats receiving sodium chloride and indomethacin. In: Samuelsson B, Paoletti R (eds) Advances in prostaglandin and thromboxane research, Vol 7. Raven Press, New York, pp 1139–1143

    Google Scholar 

  45. O'Brien PMS, Pipkin FB (1979) The effects of deprivation of prostaglandin precursors on vascular sensitivity to angiotensin II and on the kidney in the pregnant rabbit. Br J Pharmacol 65:29–34

    PubMed  Google Scholar 

  46. O'Grady J, Moncada S (1978) Aspirin: A paradoxical effect on bleeding time. Lancet IV:780

    Google Scholar 

  47. Oelz O, Oelz R, Knapp HR, Sweetman BJ, Oates JA (1977) Biosynthesis of prostaglandin D2: formation by human platelets. Prostaglandins 13:225–234

    PubMed  Google Scholar 

  48. Patrono C, Ciabattoni G, Pinca E, Pugliese F, Castrucci G, de Salvo A, Satta MA, Peskar BA (1980) Low dose aspirin and inhibition of thromboxane B2 production in healthy subjects. Thromb Res 17:317–327

    PubMed  Google Scholar 

  49. Philipp Th, Distler A, Cordes U (1978) Sympathetic nervous system and blood pressure control in essential hypertension. Lancet II:959–963

    Google Scholar 

  50. Poplawski A, Skorulska M, Niewiarowski S (1968) Increased platelet adhesiveness in hypertensive cardiovascular disease. J Atheroscler Res 8:721–723

    PubMed  Google Scholar 

  51. Rathaus M, Podjarny E, Weiss E, Ravid M, Bauminger S, Bernheim J (1981) Effect of chronic and acute changes in sodium balance on the urinary excretion of prostaglandins E2 and F in normal man. Clin Sci 60:405–410

    PubMed  Google Scholar 

  52. Rosenthal J, Simone PG, Silbergleit A (1974) Effects of prostaglandin deficiency on natriuresis, diuresis, and blood pressure. Prostaglandins 5:435–440

    PubMed  Google Scholar 

  53. Rosner B, Hennekens ChH, Kass EH, Miall WE (1977) Agespecific correlation analysis of longitudinal blood pressure data. Am J Epidemiol 106:306–313

    PubMed  Google Scholar 

  54. Samuelsson B, Goldyne M, Granström M, Hamberg M, Hammarström S, Malmsten C (1978) Prostaglandins and thromboxane. Ann Rev Biochem 47:997–1029

    PubMed  Google Scholar 

  55. Schalekamp MADH, Schalekamp-Kuyken MPA, Birkenhäger WH (1970) Abnormal renal haemodynamics and renin suppression in hypertensive patients. Clin Sci 38:101–110

    PubMed  Google Scholar 

  56. Scherer B, Friedmann B, Dumbs A, Holzmann K, Weber PC (1980) Urinary prostaglandins in human neonates: relationship to kidney function and blood pressure. Klin Wochenschr 58:449–455

    PubMed  Google Scholar 

  57. Scherer B, Weber PC (1978) Time-dependent changes in prostaglandin excretion in response to frusemide in man. Clin Sci 56:77–81

    Google Scholar 

  58. Schnermann J, Weber PC (1980) A role of renal cortical prostaglandins in the control of glomerular filtration rate in rat kidneys. In: Samuelsson B, Ramwell PW, Paoletti R (eds) Advances in prostaglandin and thromboxane research, Vol 7. Raven Press, New York, pp 1047–1052

    Google Scholar 

  59. Schoene NW, Reeves VB, Ferretti A (1980) Effects of dietary linoleic acid on the biosynthesis of PGE2 and PGF in kidney medullae in spontaneously hypertensive rats. In: Samuelsson B, Ramwell PW, Paoletti R (eds) Advances in prostaglandin and thromboxane research, Vol 8. Raven Press, New York, pp 1790–1792

    Google Scholar 

  60. Schrör K, Smith III, EF, Bickerton M, Smith JB, Nicolaou KC, Magolda R, Lefer AM (1980) Preservation of ischemic myocardium by pinane thromboxane A2. Am J Physiol 238:H87-H92

    PubMed  Google Scholar 

  61. Shibouta Y, Inada Y, Terashita Z, Nishikawa K, Kikuchi S, Shimamoto K (1979) Angiotensin-II-stimulated release of thromboxane A2 and prostacyclin (PGI2) in isolated, perfused kidneys of spontaneously hypertensive rats. Biochem Pharmacol 28:3601–3609

    PubMed  Google Scholar 

  62. Smith-Barbaro PA, Quinn MR, Fisher H, Hegsted DM (1980) Pressor effects of fat and salt in rats. Proc Soc Exp Biol Med 165:283–290

    PubMed  Google Scholar 

  63. Siess W, Dray F, Seillan C, Ody C, Russo-Marie F (1981) Prostanoid synthesis by vascular slices and cultured vascular cells of piglett aorta. Biochem Biophys Res Commun 99:608–616

    PubMed  Google Scholar 

  64. Siess W, Roth P, Scherer B, Kurzmann I, Böhlig B, Weber PC (1980) Platelet-membrane fatty acids, platelet aggregation, and thromboxane formation during a mackerel diet. Lancet I:441–444

    Google Scholar 

  65. Stuart MJ, Gerrard JM, White JG (1980) Effect of cholesterol on production of thromboxane B2 by platelets in vitro. N Engl J Med 302:6–10

    PubMed  Google Scholar 

  66. Tan SY, Sweet P, Mulrow PJ (1978) Impaired renal production of prostaglandin E2: A newly identified lesion in human essential hypertension. Prostaglandins 15:139–149

    PubMed  Google Scholar 

  67. The Anturane Reinfarction Trial Research Croup (1980) Sulfinpyrazone in the prevention of sudden death after myocardial infarction. N Engl J Med 302:250–256

    Google Scholar 

  68. The Canadian Cooperative Study Group (1978) A randomized trial of aspirin and sulfinpyrazone in threatened stroke. N Eng J Med 299:53–59

    Google Scholar 

  69. Tyler HM, Saxton CAPD, Parry MJ (1981) Administration to man of UK-37, 248-01, a selective inhibitor of thromboxane synthetase. Lancet I:629–632

    Google Scholar 

  70. Vane JR, McGiff JC (1975) Possible contributions of endogenous prostaglandins to the control of blood pressure. Circ Res 36 and 37 [Suppl I]: I-68–I-75

    Google Scholar 

  71. Vermylen J, Defreyn G, Garreras LO, Machin SJ, van Schaerer J, Verstraete M (1981) Thromboxane-synthetase inhibition as antithrombotic strategy. Lancet II:1073–1075

    Google Scholar 

  72. Vik-Mo H (1977) Effects of acute myocardial ischaemia on platelet aggregation in the coronary sinus and aorta in dogs. Scand J Haematol 19:68–74

    PubMed  Google Scholar 

  73. Walter E, Kaufmann W, Oster P (1981) Does chronic aspirin treatment increase blood pressure in man? Klin Wochenschr 59:297–299

    PubMed  Google Scholar 

  74. Watkins J, Abbott EC, Hensby ChN, Webster J, Dollery CT (1980) Attenuation of hypotensive effect of propranolol and thiazide diuretics by indomethacin. Br Med J 281:702–705

    PubMed  Google Scholar 

  75. Weber PC, Larsson C, Änggard E, Hamberg M, Corey EJ, Nicolaou KC, Samuelsson B (1976) Stimulation of renin release from rabbit renal cortex by arachidonic acid and prostaglandin endoperoxides. Circ Res 39:868–874

    PubMed  Google Scholar 

  76. Weber PC, Larsson C, Scherer B (1977) Prostaglandin E2-9-ketoreductase as a mediator of salt intake-related prostaglandin-renin interaction. Nature 266:65–66

    Google Scholar 

  77. Weber PC, Scherer B, Held E, Siess W, Stoffel H (1979) Urinary prostaglandins and kallikrein in essential hypertension. Cli Sci 57:259s-261s

    Google Scholar 

  78. Weber PC, Scherer B, Larsson C (1977) Increase of free arachidonic acid by furosemide in man as the cause of prostaglandin and renin release. Eur J Pharmacol 41:329–332

    PubMed  Google Scholar 

  79. Weber PC, Scherer B, Siess W, Held E, Schnermann J (1979) Formation and action of prostaglandins in the kidney. Klin Wochenschr 57:1021–1029

    PubMed  Google Scholar 

  80. Weber PC, Siess W, Scherer B (1979) Prostaglandins in cardiovascular and renal function: Biochemical, physiological and clinical findings. Klin Wochenschr 57:425–444

    PubMed  Google Scholar 

  81. Weber PC, Siess W, Scherer B (1980) Possible significance of renal prostaglandins in essential hypertension. Clin Exptl Hypertension 2(3+4): 741–760

    Google Scholar 

  82. Webster J, Dollery CT, Hensby CN (1980) Circulating prostacyclin concentrations may be increased by bendrofluazide in patients with essential hypertension. Clin Sci 59:125s-128s

    PubMed  Google Scholar 

  83. Weidmann P (1980) Recent pathogenic aspects in essential hypertension and hypertension associated with diabetes mellitus. Klin Wochenschr 58:1071–1089

    PubMed  Google Scholar 

  84. Wennmalm A (1978) Influence of indomethacin on the systemic and pulmonary vascular resistance in man. Clin Sci Mol Med 54:141–145

    PubMed  Google Scholar 

  85. Whorton AR, Misono K, Hollifield J, Frolich JC, Inagami T, Oates JA (1977) Stimulation of renin release from rabbit renal cortical slices by PGI2. Prostaglandins 14:1095–1104

    PubMed  Google Scholar 

  86. Witzgall H, Hirsch F, Scherer B, Weber PC (1982) Acute haemodynamic and hormonal effects of captopril are diminished by indomethacin. Clin Sci 62: (in press)

  87. Ylitalo P, Pitkäjärvi T, Metsä-Ketelä T, Vapaatalo H (1978) The effect of inhibition of prostaglandin synthesis on plasma renin activity and blood pressure in essential hypertension. Prostaglandins Med 1:479–488

    PubMed  Google Scholar 

  88. Zinner SH, Margolius HS, Rosner B, Kass EH (1978) Stability of blood pressure rank and urinary kallikrein concentration in childhood: an eight-year follow-up. Circulation 58:908–915

    PubMed  Google Scholar 

  89. Zusaman RM, Keiser HR (1977) Prostaglandin E2 biosynthesis by rabbit renomedullary interstitial cells in tissue culture. J Biol Chem 252:2069–2071

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor E. Buchborn on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, P.C., Siess, W., Scherer, B. et al. Arachidonic acid metabolites, hypertension and arteriosclerosis. Klin Wochenschr 60, 479–488 (1982). https://doi.org/10.1007/BF01756093

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01756093

Key words

Schlüsselwörter

Navigation