Skip to main content
Log in

Cardiac glycoside tolerance in cultured chicken heart muscle cells — A dose-dependent phenomenon

  • Originalien
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

In cultured heart muscle cells from 10–13 day-old chicken embryos, the effects of acute (4 h) and chronic (3 days) exposure of the cells to varying concentrations of ouabain have been studied. In these cells, the cardiac glycoside ouabain binds to a specific cardiac glycoside receptor (KD=4 × 10−7 M; 750,000 receptors/cell). Binding to this receptor results in inhibition of active Na+/K+-transport [EC50 for active (86Rb+ + K+)-influx=4 × 10−6 M], and in an increase in beating velocity (“positive inotropic effect”;; EC50=4 × 10−7 M); toxic signs (arrhythmias) appear at concentrations ≥ 6 × 10−7 M. During exposure of the cells to 3 × 10−6 M ouabain for 3 days, tolerance develops with respect to both the positive inotropic and the toxic effect. The mechanism underlying this tolerance is identified as an increase in the number of active sodium pump molecules per cell, while the binding properties of the cardiac glycoside receptor remain unchanged. The development of cardiac glycoside tolerance is only observed in the presence of severe impairment of Na+/K+-homeostasis, due to cardiac glycoside-induced inhibition of active Na+/K+-transport. This, however, only occurs in the presence of toxic (receptor occupation ≥ 60%), but not in the presence of positive inotropic, non-toxic (receptor occupation 20–60%), ouabain concentrations. We conclude that the development of cardiac glycoside tolerance during long-term treatment in patients with heart failure should not occur with submaximal dose regimens, when toxic signs (arrhythmias) are absent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

CGP-12177:

(4-3-tert-butylamino-2-hydroxy-propoxy)-benzimidazol-2-one hydrochloride)

HEPES:

N-2-hydroxyethylpiperazine-N′-2-ethanesulphonic acid

References

  1. Arnold SB, Byrd R, Meister W, Melmon K, Cheitlin MD, Bristow JD, Parmley WW, Chatterjee K (1980) Long-term digitalis therapy improves left ventricular function in heart failure. New Engl J Med 303:1443–1448

    Google Scholar 

  2. Barry WH, Hasin Y, Smith TW (1985) Sodium pump inhibition, enhanced calcium exchange, and positive inotropic response in cultured heart cells. Circ Res 56:231–241

    Google Scholar 

  3. Biedert S, Barry WH, Smith TW (1979) Inotropic effects and changes in sodium and calcium contents associated with inhibition of monovalent cation active transport by ouabain in cultured myocardial cells. J Gen Physiol 74:479–494

    Google Scholar 

  4. Bluschke V, Bonn R, Greeff K (1976) Increase in the (Na+ + K+)-ATPase activity in heart muscle after chronic treatment with digitoxin or potassium deficient diet. Eur J Pharmac 37:189–191

    Google Scholar 

  5. Boardman L, Hume SP, Lamb JF, McCall D, Newton JP, Polson JM (1975) Genetic control of sodium pump density. In: Developmental and physiological correlates of cardiac muscle. Eds. Lieberman M, Sano T, Raven Press, New York, pp 127–138

    Google Scholar 

  6. Bonn R, Greeff K (1978) The effect of chronic administration of digitoxin on the activity of the myocardial (Na+ + K+)-ATPase in guinea-pigs. Arch Int Pharmacodyn Ther 233:53–64

    Google Scholar 

  7. Cameron JR, Ward JPT (1981) Adaptation of the sodium pump to chronic potassium lack. J Physiol 316:8P

    Google Scholar 

  8. Cumberbatch M, Zareian K, Davidson C, Morgan DB, Swaminathan R (1981) The early and late effects of digoxin treatment on the sodium transport, sodium content and Na+ + K+-ATPase of erythrocytes. Br J Clin Pharmacol 11:565–570

    Google Scholar 

  9. Davidson C, Gibson D (1973) Clinical significance of positive inotropic action of digoxin in patients with left ventricular disease. Br Heart J 35:970–976

    Google Scholar 

  10. Dobbs SM, Kenyonk WI, Dobbs RJ (1977) Maintenance digoxin after an episode of heart failure: placebo-controlled trial in outpatients. Br Med J 1:749–752

    Google Scholar 

  11. Erdmann E, Bolte H-D, Lüderitz B (1971) The (Na+ + K+)-ATPase activity of guinea pig heart muscle in potassium deficiency. Arch Biochem Biophys 145:121–125

    Google Scholar 

  12. Erdmann E, Krawietz W (1977) Increased number of ouabain binding sites in human erythrocyte membranes in chronic hypokalaemia. Acta Biol Med Germ 36:879–883

    Google Scholar 

  13. Erdmann E, Krawietz W, Koch M (1979) Cardiac glycoside receptors in disease: the number of ouabain binding sites in human erythrocytes is subject of regulation. In: Na, K-ATPase, Structure and Kinetics. (Eds.: Skou JG, Norby JG), Academic Press, London pp 517–524

    Google Scholar 

  14. Erdmann E (1981) Influence of cardiac glycosides on their receptor. In: Greeff K (ed.) Cardiac Glycosides. Springer, Berlin Heidelberg New York (Handbook of Experimental Pharmacology, Vol. 56/I, pp 337–380)

    Google Scholar 

  15. Erdmann E, Krawietz W, Werdan K (1983) Gibt es Rezeptorveränderungen unter Langzeitwirkung von Digitalis? In: Digitalistherapie heute. Herausgeber: H. Gillmann und L. Storstein. Verlag für angewandte Wissenschaften, München pp 5–9

    Google Scholar 

  16. Erdmann E, Brown L (1983) The cardiac glycoside-receptor system in the human heart. Eur Heart J 4: Suppl. A pp 61–65

    Google Scholar 

  17. Erdmann E (1984) Stellenwert der Herzglykoside in der Therapie der chronischen Herzinsuffizienz, Klin Wochenschr 62:507–511

    Google Scholar 

  18. Erdmann E, Werdan K, Krawietz W (1984) Influence of digitalis and diuretics on ouabain binding sites on human erythrocytes. Klin Wochenschr 62:87–92

    Google Scholar 

  19. Fleg JL, Gottlieb SH, Lakatta EG (1982) Is digoxin really important in treatment of compensated heart failure? A placebo-controlled crossover study in patients with sinus rhythm. Am J Med 73:244–250

    Google Scholar 

  20. Ford AR, Aronson JK, Grahame-Smith DG, Carver JG (1979) The acute changes seen in cardiac glycoside receptor sites, rubidium uptake and intracellular sodium concentrations in the erythrocytes of patients during the early phases of digoxin therapy are not found during chronic therapy: pharmacological and therapeutic implications for chronic digoxin therapy. Br J Clin Pharmacol 8:135–142

    Google Scholar 

  21. Gardner JD, Kiino DR (1973) Ouabain binding and cation transport in human erythrocytes. J Clin Invest 52:1845–1851

    Google Scholar 

  22. Grahame-Smith DG (1985) Pharmacological adaptive responses occurring during drug therapy and in disease. Trends Pharmac Sci 6:38–41

    Google Scholar 

  23. Isenberg G (1984) Contractility for isolated bovine ventricular myocytes is enhanced by intracellular injection of cardioactive glycosides. Evidence for an intracellular mode of action. In: Erdmann E (ed.) Cardiac glycoside receptors and positive inotropy — Evidence for more than one receptor? Steinkopff Verlag, Darmstadt (Basic Res Cardiol 79 (Suppl):56–71)

    Google Scholar 

  24. Kazazoglou T, Renaud JF, Rossi B, Lazdunski M (1983) Two classes of ouabain receptors in chick ventricular cardiac cells and their relation to (Na+ + K+)-ATPase inhibition, intracellular Na+ accumulation, Ca2+-influx, and cardiotonic effect. J Biol Chem 258:12163–12170

    Google Scholar 

  25. Kim D, Marsh JD, Barry WH, Smith TW (1984) Effects of growth in low potassium medium or ouabain on membrane Na, K-ATPase, cation transport and contractility in cultured chick heart cells. Circ Res 55:39–48

    Google Scholar 

  26. Kim D, Barry WH, Smith TW (1984) Kinetics of ouabain binding and changes in cellular sodium content,42K+-transport and contractile state during ouabain exposure in cultured chick heart cells. J Pharm Exp Therap 231:326–333

    Google Scholar 

  27. Koidl B, Tritthart HA (1980) The effects of ouabain on the electrical and mechanical activities of embryonic chick heart cells in culture. J Mol Cell Cardiol 12:663–673

    Google Scholar 

  28. Ku DD, Akera T, Brody T, Weaver LC (1977) Chronic digoxin treatment on canine myocardial Na++K+-ATPase. Naunyn-Schmiedeberg's Arch Pharmacol 301:39–47

    Google Scholar 

  29. Lee DC-S, Johnson RA, Bingham JB, Leahy M, Dinsmore RE, Goroll AB, Newell JB, Strauss HW, Haber E (1982) Heart failure in outpatients. A randomized trial of digoxin versus placebo. New Engl J Med 306:699–705

    Google Scholar 

  30. Lindsay R, Parker JLW (1976) Rat hepatic sodium plus potassium ion-dependent adenosine triphosphatase after treatment with digoxin and thyroxine. Clin Sci Mol Med 50:329–332

    Google Scholar 

  31. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  32. Malini PL, Strocchi E, Marata AM, Ambrosioni E (1984) Digitalis ‘receptors’ during chronic digoxin treatment. Clin Exp Pharmacol Physiol 11:285–289

    Google Scholar 

  33. McHaffie S, Purcell H, Mitchell-Heggs P, Guz A (1978) The clinical value of digoxin in patients with heart failure and sinus rhythm. Q J Med 47:401–419

    Google Scholar 

  34. Nechay BR, Jackson RE, Ziegler MG, Neldon SL, Thompson JD (1981) Effects of chronic digitalization on cardiac and renal Na++K+-dependent adenosine triphosphatase activity and circulating catecholamines in the dog. Circ Res 49:655–660

    Google Scholar 

  35. Noble D (1980) Mechanism of action of therapeutic levels of cardiac glycosides. Cardiovasc Res 14:495–514

    Google Scholar 

  36. Pollack LR, Tate EH, Cook JS (1981) Na++K+-ATPase in HeLa cells after prolonged growth in low K+ or ouabain. J Cell Physiol 106:85–97

    Google Scholar 

  37. Porzig H, Becker C, Reuter H (1982) Competitive and non-competitive interactions between specific ligands and beta-adrenoceptors in living cardiac cells. Naunyn-Schmiedeberg's Arch Pharmacol 321:89–99

    Google Scholar 

  38. Scatchard G (1949) The attractions of protein for small molecules and ions. Ann NY Acad Sci 51:660–672

    Google Scholar 

  39. Staiger J, Späth J, Dickhuth H-H, Keul J (1983) Influence of low-dose digitoxin (0.07 mg) on left ventricular contractility in chronic heart failure (stages II–III). Z Kardiol 72:448–455

    Google Scholar 

  40. Vassalle M, Lee CO (1984) The relationship among intracellular sodium activity, calcium, and strophanthidin in canine cardiac Purkinje fibers. J Gen Physiol 83:287–303

    Google Scholar 

  41. Vogel R, Frischknecht J, Steele P (1977) Short- and long-term effects of digitalis on resting and post hand grip hemodynamics in patients with coronary artery disease. Am J Cardiol 40:171–176

    Google Scholar 

  42. Werdan K, Bauriedel G, Bozsik M, Krawietz W, Erdmann E (1980) Effects of vanadate in cultured rat heart muscle cells. Vanadate transport, intracellular binding and vanadate-induced changes in beating and in active cation flux. Biochim Biophys Acta 597:364–383

    Google Scholar 

  43. Werdan K, Bauriedel G, Fischer B, Krawietz W, Erdmann E, Schmitz W, Scholz H (1982) Stimulatory (insulin-mimetic) and inhibitory (ouabain-like) action of vanadate on potassium uptake and cellular sodium and potassium in heart cells in culture. Biochim Biophys Acta 687:79–93

    Google Scholar 

  44. Werdan K, Zwißler B, Wagenknecht B, Krawietz W, Erdmann E (1983) Quantitative correlation of cardiac glycoside binding to its receptor and inhibition of the sodium pump in chicken heart cells in culture. Biochem Pharmacol 32:757–760

    Google Scholar 

  45. Werdan K, Wagenknecht B, Zwißler B, Brown L, Krawietz W, Erdmann E (1984) Cardiac glycoside receptors in cultured heart cells-I. Characterization of one single class of high affinity receptors in heart muscle cells from chick embryos. Biochem Pharmacol 33:55–70

    Google Scholar 

  46. Werdan K, Reithmann C, Krawietz W, Erdmann E (1984) Chronic exposure to toxic but not to “therapeutic” concentrations of ouabain increases cardiac glycoside receptors in cardiac muscle cells from chicken embryos. Biochem Pharmacol 33:2337–2340

    Google Scholar 

  47. Werdan K, Schneider G, Krawietz W, Erdmann E (1984) Chronic exposure to low K+ increases cardiac glycoside receptors in cultured cardiac cells: different responses of cardiac muscle and non-muscle cells from chicken embryos. Biochem Pharmacol 33:1161–1164

    Google Scholar 

  48. Werdan K (1984) Herzglykosid-Rezeptoren der intaken Herzmuskelzelle — Eigenschaften und deren experimentelle Beeinflussung. Habilitationsschrift, Universität München

  49. Werdan K, Schneider G, Reithmann C, Krawietz W, Erdmann E (1984) Ouabain treatment and chronic K+ depletion increase the number of cardiac glycoside receptors. Eur Heart J 5 (Suppl. I):192

    Google Scholar 

  50. Whittacker J, Swaminathan R (1983) The effect of chronic digoxin administration on the Na++K+-ATPase activity in the pig. IRCS Med Sci 11:846

    Google Scholar 

  51. Wilkins RR, Kendall MJ, Wade OL (1985) William Withering and digitalis, 1785 to 1985. Br Med J 290:7–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Some of the results were presented at the “IXth European Congress of Cardiology”, July 1984, Düsseldorf, Germany [49]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werdan, K., Reithmann, C. & Erdmann, E. Cardiac glycoside tolerance in cultured chicken heart muscle cells — A dose-dependent phenomenon. Klin Wochenschr 63, 1253–1264 (1985). https://doi.org/10.1007/BF01738450

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01738450

Key words

Navigation