Skip to main content
Log in

Regulation of low-density lipoprotein particle size distribution in NIDDM and coronary disease: importance of serum triglycerides

  • Originals
  • Published:
Diabetologia Aims and scope Submit manuscript

Summary

An increase of low-density lipoprotein triglycerides (LDL-Tg) was found to be an independent coronary artery disease (CAD) risk factor for non-insulin-dependent diabetic (NIDDM) patients in a recent prospective study. We examined the composition and size of LDL particles in 50 NIDDM men with angiographically verified CAD (NIDDM+ CAD+) and in 50 NIDDM men without CAD (NIDDM+ CAD−) as compared to 50 non-diabetic men with CAD (NIDDM− CAD+) and 31 non-diabetic men without CAD (NIDDM− CAD−). The groups had similar ranges of age and BMI LDL particle size was determined by gradient gel electrophoresis, and LDL was isolated by sequential ultracentrifugation for compositional analyses. Serum Tg was increased in NIDDM patients as compared to non-diabetic subjects (p<0.05), and in patients with CAD as compared to subjects without the disease (p<0.05). LDL cholesterol was lower in NIDDM patients than in non-diabetic subjects (p<0.001). Mean diameter of LDL particles was less than 255 å, but closely comparable in all groups. The presence of NIDDM was associated with increases of Tg and protein but lowering of free cholesterol in LDL (p<0.005 for all). In multivariate regression analyses neither NIDDM nor CAD were associated with LDL particle size, but serum Tg was the major determinant of LDL size in both NIDDM and non-diabetic subjects (p<0.001). When the patients were divided into quartiles according to fasting serum Tg levels, the LDL particle size and free cholesterol content decreased, but Tg and protein contents of LDL particles increased from the lowest to the highest Tg quartile (analysis of variance p<0.001 for all). When the subjects were categorized into two groups according to the median of VLDL-Tg (1.10 mmol/l) LDL size was associated with VLDL-Tg in the high but not in the low VLDL-Tg group. We conclude that in NIDDM patients with or without CAD serum Tg is the major determinant of the properties of LDL particles. The clinical implication is that in NIDDM serum Tg should be as low as possible to prevent atherogenic changes in LDL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NIDDM:

Non-insulin-dependent diabetes mellitus

CAD:

coronary artery disease

HDL:

high-density lipoprotein

LDL:

low-density lipoprotein

VLDL:

very-low-density lipoprotein

apoB:

apolipoprotein B

HL:

hepatic lipase

LPL:

lipoprotein lipase

CETP:

cholesteryl ester transfer protein

PL:

phospholipids

ANOVA:

analysis of variance

Tg:

triglycerides

FC:

free cholesterol

References

  1. Kannel WB, McGee DL (1979) Diabetes and cardiovascular disease: the Framingham Study. JAMA 241: 2035–2038

    PubMed  Google Scholar 

  2. Nathan DM (1993) Long-term complications of diabetes mellitus. N Engl J Med 328: 1676–1685

    Article  PubMed  Google Scholar 

  3. Wingard DL, Barrett-Connor E, Criqui MH, Suarez L (1983) Clustering of heart disease risk factors in diabetic compared to nondiabetic adults. Am J Epidemiol 117: 19–26

    PubMed  Google Scholar 

  4. PyörÄlÄ K, Laakso M, Uusitupa M (1987) Diabetes and atherosclerosis: an epidemiological view. Diabetes Metab Rev 3: 463–524

    PubMed  Google Scholar 

  5. Stamler J, Vaccaro O, Neaton JD, Wenthworth D (1993) Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the multiple risk factor intervention trial. Diabetes Care 16: 434–444

    PubMed  Google Scholar 

  6. Howard BJ (1987) Lipoprotein metabolism in diabetes mellitus. J Lipid Res 28: 613–628

    PubMed  Google Scholar 

  7. Taskinen M-R (1990) Hyperlipidemia in diabetes. Clin Endocrinol Metab 4: 743–775

    Google Scholar 

  8. Taskinen M-R (1992) Quantitative and qualitative lipoprotein abnormalities in diabetes mellitus. Diabetes 41 [Suppl 2]: 12–17

    Google Scholar 

  9. Pfeiffer MA, Brunzell JD, Best JD, Judgewitsch RG, Halter JB, Porte D Jr (1983) The response of plasma triglyceride, cholesterol, and lipoprotein lipase to treatment in non-insulin-dependent diabetic subjects without familial hypertriglyceridemia. Diabetes 32: 525–531

    PubMed  Google Scholar 

  10. Fontbonne A, Eschwege E, Cambien F et al. (1989) Hypertriglyceridaemia as a risk factor of coronary heart disease mortality in subjects with impaired glucose tolerance or diabetes. Results from the 11-year follow-up of the Paris Prospective Study. Diabetologia 32: 300–304

    Article  PubMed  Google Scholar 

  11. Laakso M, Lehto S, PenttilÄ I, PyörÄlÄ K (1993) Lipids and lipoproteins predicting coronary heart disease mortality and morbidity in patients with non-insulin-dependent diabetes. Circulation 88 [Part 1]: 1421–1430

    PubMed  Google Scholar 

  12. Fisher WJ (1983) Heterogeneity of plasma low density lipoproteins; manifestations of the physiologic phenomenon in man. Metabolism 32: 283–291

    Article  PubMed  Google Scholar 

  13. Krauss RM, Burke DJ (1982) Identification of multiple subclasses of plasma low density lipoproteins in normal humans. J Lipid Res 23: 97–104

    PubMed  Google Scholar 

  14. Austin MA, Breslow JL, Hennekens CH, Buring JE, Willett WC, Krauss RM (1988) Low density lipoprotein subclass patterns and risk of myocardial infarction. JAMA 260: 1917–1921

    PubMed  Google Scholar 

  15. Austin MA, King MC, Vranizan KM, Krauss RM (1990) Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation 82: 495–506

    PubMed  Google Scholar 

  16. Campos H, Blijlevens E, McNamara JR et al. (1992) LDL particle size distribution. Results from the Framingham offspring study. Arterioscler Thromb 12: 1410–1419

    PubMed  Google Scholar 

  17. Barrett-Connor E, Grundy SM, Holdbrook MJ (1982) Plasma lipids and diabetes mellitus in an adult community. Am J Epidemiol 115: 657–663

    PubMed  Google Scholar 

  18. Rönnemaa T, Laakso M, Kallio V, PyörÄlÄ K, Marniemi J, Puukka P (1989) Serum lipids, lipoproteins, and apolipoproteins and the excessive occurrence of coronary heart disease in non-insulin-dependent diabetic patients. Am J Epidemiol 130: 632–645

    PubMed  Google Scholar 

  19. Uusitupa MIJ, Niskanen LK, Siitonen O, Voutilainen E, PyörÄlÄ K (1993) Ten-year cardiovasular mortality in relation to risk factor and abnormalities in lipoprotein composition in type 2 (non-insulin-dependent) diabetic and nondiabetic subjects. Diabetologia 36: 1175–1184

    PubMed  Google Scholar 

  20. Tilly-Kiesi M, SyvÄnne M, Kuusi T, LahdenperÄ S, Taskinen M-R (1992) Abnormalities of low-density lipoproteins in normolipidemic type 2 diabetic and non-diabetic patients with coronary heart disease. J Lipid Res 33: 333–342

    PubMed  Google Scholar 

  21. Deckelbaum RJ, Granot E, Oschry Y, Rose L, Eisenberg S (1984) Plasma triglyceride determines structure-composition in low and high density lipoproteins. Arteriosclerosis 4: 225–231

    PubMed  Google Scholar 

  22. Barakat HA, Carpenter JW, McLendon VD et al. (1990) Influence of obesity, impaired glucose tolerance, and NIDDM on LDL structure and composition: possible link between hyperinsulinemia and atherosclerosis. Diabetes 39: 1527–1533

    PubMed  Google Scholar 

  23. Coresh J, Kwiterovich PO, Smith HH, Bachorik PS (1993) Association of plasma triglyceride concentration and LDL particle diameter, density, and chemical composition with premature coronary artery disease in men and women. J Lipid Res 34: 1687–1697

    PubMed  Google Scholar 

  24. McNamara JR, Campos H, Ordovas JM, Peterson J, Wilson PWF, Schaefer EJ (1987) Effect of gender, age, and lipid status on low density lipoprotein subfraction distribution. Results from the Framingham offspring study. Arteriosclerosis 7: 483–490

    PubMed  Google Scholar 

  25. SyvÄnne M, Kahri J, Virtanen KS, Taskinen M-R (1995) High density lipoproteins containing apolipoproteins A-I and A-II (LpA-I∶A-II) as markers of coronary artery disease in men with non-insulin-dependent diabetes mellitus. Circulation (in press)

  26. World Health Organization (1980) WHO Expert Committee on Diabetes Mellitus, Second Report. Geneva, World Health Organization, (Techn. Rep. Ser., no. 646)

    Google Scholar 

  27. Kupari M, Virtanen KS, Turto H et al. (1992) Exclusion of coronary artery disease by exercise thallium-201 tomography in patients with aortic valve stenosis. Am J Cardiol 70: 635–640

    Article  PubMed  Google Scholar 

  28. Havel JR, Eder HA, Bragdon JH (1955) Distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest 34: 1345–1353

    PubMed  Google Scholar 

  29. Taskinen M-R, Kuusi T, Helve E, NikkilÄ E, Yki-JÄrvinen H (1988) Insulin therapy induces antiatherogenic changes of serum lipoproteins in non-insulin-dependent diabetes. Arteriosclerosis 8: 168–177

    PubMed  Google Scholar 

  30. Nichols AV, Krauss RM, Musliner TA (1986) Nondenaturing polyacrylamide gel electrophoresis. In: Segrest JP, Albers JJ (eds). Methods in enzymology: plasma lipoproteins. Vol. 128. Academic Press London, p. 417

    Google Scholar 

  31. LahdenperÄ S, Tilly-Kiesi M, Vuorinen-Markkola H, Kuusi T, Taskinen M-R (1993) Effects of gemfibrozil on low-density lipoprotein particle size, density distribution, and composition in patients with type II diabetes. Diabetes Care 16: 584–592

    PubMed  Google Scholar 

  32. Huttunen JK, Ehnholm C, Kinnunen PJ, NikkilÄ EA (1975) An immunochemical method for measurement of two triglyceride lipases in human postheparin plasma. Clin Chim Acta 63: 335–347

    Article  PubMed  Google Scholar 

  33. Groener JEM, Pelton RW, Kostner GM (1986) Improved estimation of cholesteryl ester transfer activities. Clin Chem 32: 283–286

    PubMed  Google Scholar 

  34. Kahri J, SyvÄnne M, Taskinen M-R (1994) Plasma cholesteryl ester transfer protein activity in NIDDM patients with and without coronary artery disease. Metabolism 43: 1498–1502

    Article  PubMed  Google Scholar 

  35. Kashyap MR, Hynd BA, Robinson K (1980) A rapid and simple method for measurement of total protein in very low density lipoprotein by the Lowry assay. J Lip Res 21: 491–495

    Google Scholar 

  36. SyvÄnne M, Ahola M, LahdenperÄ S et al. (1995) High density lipoprotein subfractions in non-insulin-dependent diabetes mellitus and coronary artery disease. J Lip Res 36: 573–582

    Google Scholar 

  37. Feingold KR, Grunfeld C, Coerrler W, Krauss RM (1992) LDL subclass phenotypes and triglyceride metabolism in non-insulin-dependent diabetes. Arterioscler Thromb 12: 1496–1502

    PubMed  Google Scholar 

  38. Haffner SM, MykkÄnen L, Stern MP, Paidi M, Howard BV (1994) Greater effect of diabetes on LDL size in women than in men. Diabetes Care 17: 1164–1171

    PubMed  Google Scholar 

  39. Griffin BA, Freeman DJ, Tait GW et al. (1994) Role of plasma triglyceride in the regulation of plasma low density lipoprotein (LDL) subfractions: relative contribution of small, dense LDL to coronary heart risk. Atherosclerosis 106: 241–253

    PubMed  Google Scholar 

  40. Pometta D, James RW (1993) Factors affecting lipoprotein in diabetes. International symposium on the lipid triad (triglycerides, HDL, LDL) and cardiovascular diseases. Milan, Italy July 5–8, 1993 (Abstract)

  41. American Diabetes Association (1993) Detection and management of lipid disorders in diabetes. Diabetes Care 16: 828–834

    Google Scholar 

  42. NIH Consensus Development Panel (1993) Triglyceride, high-density lipoprotein, and coronary heart disease. JAMA 269: 505–510

    Google Scholar 

  43. Manzato E, Zambon S, Zambon A, Cortella A, Sartore G, Grepaldi G (1993) Levels and physiochemical properties of lipoprotein subclasses in moderate hypertriglyceridemia. Clin Chem Acta 219: 57–65

    Article  Google Scholar 

  44. Cohen JC, Grundy SM (1993) Normal postprandial lipemia in men with low plasma HDL concentrations. Arterioscler Thromb 12: 972–975

    Google Scholar 

  45. Taskinen M-R, Packard CJ, Shepherd J (1990) Effect of insulin therapy on metabolic fate of apolipoprotein B-containing lipoproteins in NIDDM. Diabetes 39: 1017–1027

    PubMed  Google Scholar 

  46. Packard CJ, Gaw A, Demant T, Shepherd J (1995) Development and application of a multicompartmental model to study very low density lipoprotein subfraction metabolism. J Lipid Res 36: 172–187

    PubMed  Google Scholar 

  47. Nigon F, Lesnik P, Rouis M, Chapman MJ (1991) Discrete subspecies of human low density lipoproteins are heterogeneous in their interaction with the cellular LDL receptor. J Lipid Res 32: 1741–1753

    PubMed  Google Scholar 

  48. Lagrost L, Gambert P, Lallemant C (1994) Combined effects of lipid transfers and lipolysis on gradient gel patterns of human plasma LDL. Arterioscler Thromb 14: 1327–1336

    PubMed  Google Scholar 

  49. Taskinen M-R (1995) Insulin resistance and lipoprotein metabolism. Current Opinion in Lipidology 6: 153–160

    PubMed  Google Scholar 

  50. McKeone BJ, Patsch JR, Pownall HJ (1993) Plasma triglycerides determine low density lipoprotein composition, physical properties, and cell-specific binding in cultured cells. J Clin Invest 91: 1926–1933

    PubMed  Google Scholar 

  51. Chait A, Brazg RL, Tribble DL, Krauss RM (1993) Susceptibility of small, dense, low-density lipoproteins to oxidative modification in subjects with the atherogenic lipoprotein phenotype, pattern B. Am J Med 94: 350–356

    Article  PubMed  Google Scholar 

  52. Galeano NF, Milne R, Marcel YL et al. (1994) Apoprotein B structure and receptor recognition of triglyceride-rich low density lipoprotein (LDL) is modified in small LDL but not in triglyceride-rich LDL of normal size. J Biol Chem 269: 511–519

    PubMed  Google Scholar 

  53. Fielding CJ, Reaven GM, Liu G, Fielding PE (1984) Increased free cholesterol in plasma low and very low density lipoproteins in non-insulin-dependent diabetes mellitus: its role in the inhibition of cholesteryl ester transfer. Proc Natl Acad Sci 81: 2512–2516

    PubMed  Google Scholar 

  54. Owens D, Maher V, Collins P, Johnson A, Tomkin GH (1990) Cellular cholesterol regulation — a defect in the type 2 (non-insulin-dependent) diabetic patient in poor metabolic control. Diabetologia 33: 93–99

    PubMed  Google Scholar 

  55. Kuksis A, Myher JJ, Geher K et al. (1982) Decreased plasma phosphatidylcholine/free cholesterol ratio as an indicator of risk for ischemic vascular disease. Arteriosclerosis 2: 296–302

    PubMed  Google Scholar 

  56. Vakakis N, Redgrave TG, Small DM, Castelli WP (1983) Cholesterol content of red blood cells and low density lipoproteins in hypertriglyceridemia. Biochim Biophys Acta 751: 280–285

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LahdenperÄ, S., SyvÄnne, M., Kahri, J. et al. Regulation of low-density lipoprotein particle size distribution in NIDDM and coronary disease: importance of serum triglycerides. Diabetologia 39, 453–461 (1996). https://doi.org/10.1007/BF00400677

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00400677

Keywords

Navigation