Skip to main content
Log in

Lipoprotein composition in NIDDM: effects of dietary oleic acid on the composition, oxidisability and function of low and high density lipoproteins

  • Originals
  • Published:
Diabetologia Aims and scope Submit manuscript

Summary

Oxidation of low density lipoprotein (LDL) plays an important role in the pathogenesis of atherosclerosis and is related to the fatty acid composition which is altered in diabetes mellitus. This study examines the relationship between the fatty acid composition of LDL and high density lipoprotein (HDL) and lipoprotein oxidation. A group of nine non-insulin-dependent diabetic (NIDDM) patients were compared to seven healthy control subjects before and after a high monounsaturated diet. Lipoproteins were isolated and oxidisability was measured by conjugated diene formation and lipid peroxide analysis. Serum HDL cholesterol was significantly lower in the diabetic patients. LDL cholesteryl ester linoleic acid in the diabetic patients was significantly higher at baseline and decreased after diet (p<0.05) while oleic acid increased in both diabetic and non-diabetic subjects (p<0.05). HDL cholesteryl ester oleic acid was lower in the diabetic patients compared with control subjects (p<0.05) before diet and it increased significantly after diet (p<0.05). LDL lipid peroxides and conjugated diene formation were related to LDL glycation (r=0.46, p<0.05 and r=0.49, p<0.05, respectively). Both decreased following diet (lipid peroxides for diabetic patients from 476±30 to 390±20 nmol/mg protein p<0.05 and for control subjects from 350±36 to 198±30 nmol/mg protein p<0.05). HDL conjugated diene formation decreased in both groups after diet but only significantly in the control group (55.4±7.5 to 53.2±6.7 nmol/mg protein for diabetic patients and 45.8±6.4 to 31.6±4.8 nmol/mg protein p<0.05 for control subjects). There was a positive correlation between LDL lipid peroxide formation and percentage of cholesteryl ester linoleic acid in LDL from diabetic patients (r=0.61, p<0.05) and control subjects (r=0.91, p<0.01). Fatty acid composition of LDL was reflected in the composition of HDL. In the presence of HDL lipoprotein peroxidation decreased. This decrease in lipoprotein peroxidation was positively related to the percentage of linoleic acid in LDL (r=0.71, p<0.05). This study confirms the close relationship between the fatty acid composition of LDL and HDL and demonstrates the importance of the fatty acid composition of the cholesteryl ester fraction in relation to LDL oxidation in diabetes. Linoleic acid in HDL appears to be a protecting factor against oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BHT:

Butylated hydroxytoluene

EDTA:

ethyl-enediaminetetraacetic acid

TBARS:

thiobarbituric reacting substances

HPLC:

high performance liquid chromatography

MDA:

malondialdehyde

HbA1c :

glycated haemoglobin

References

  1. Bowie A, Owens D, Collins P, Johnson A, Tomkin GH (1993) Glycosylated low density lipoprotein is more sensitive to oxidation: implications for the diabetic patient? Atherosclerosis 102: 63–67

    Article  CAS  PubMed  Google Scholar 

  2. Dimitriadis E, Griffin M, Owens D, Johnson A, Collins P, Tomkin GH (1995) Oxidation of low density lipoprotein in non-insulin-dependent diabetes: its relationship to fatty acid composition. Diabetologia 38: 1300–1306

    Article  CAS  PubMed  Google Scholar 

  3. Griffin M, Dimitriadis E, Lenehan K et al. Non-insulin-dependent diabetes mellitus — dietary monounsaturated fatty acids, low density lipoprotein composition and function. Quart J Med (in press)

  4. Reaven P, Parthasarathy S, Grass BJ et al. (1991) Feasibility of using an oleate-rich diet to reduce lipoprotein oxidation in humans. Am J Clin Nutr 54: 701–706

    CAS  PubMed  Google Scholar 

  5. Reaven P, Parthasarathy S, Grass BJ, Miller E, Steinberg D (1993) Effects of oleate-rich and linoleate-rich diets on susceptibility of low density lipoproteins to oxidative modification in mildly hypercholesterolemic subjects. J Clin Invest 9: 668–676

    Article  Google Scholar 

  6. Parfitt FJ, Desomeaux K, Bolton CH, Hartog MS (1994) Effects of high monounsaturated and polyunsaturated fat diets on plasma lipoproteins and lipid peroxidation in type 2 diabetes mellitus. Diabet Med 11: 85–91

    Article  CAS  PubMed  Google Scholar 

  7. Gordon DJ, Rifkind BM (1989) High density lipoproteins — the clinical implications of recent studies. N Engl J Med 321: 1311–1318

    Article  CAS  PubMed  Google Scholar 

  8. Parthasarathy S, Barnett J, Fong LG (1990) High density lipoprotein inhibits the oxidative modification of low density lipoprotein. Biochim Biophys Acta 1044: 275–283

    Article  CAS  PubMed  Google Scholar 

  9. Klimov AN, Gurevich VS, Nikiforova AA et al. (1993) Antioxidant activity of high density lipoproteins in vivo. Atherosclerosis 103: 13–18

    Article  Google Scholar 

  10. Ohta T, Takata S, Morino Y, Matesuda I (1989) Protective effect of lipoproteins containing apo A-1 on lipoperoxides in low density lipoprotein. FEBS Letts 257: 435–438

    Article  CAS  Google Scholar 

  11. Kunitake ST, Jarvis MR, Hamilton RL, Kane JP (1992) Binding of transition metals by apolipoprotein A1-containing lipoproteins: inhibition of oxidation of low density lipoprotein. Proc Natl Acad Sci USA 89: 6993–6997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mackness MJ, Abbott C, Arrol S, Durrington PN (1993) The role of high density lipoprotein and lipid-soluble antioxidant vitamins in inhibiting low density lipoprotein oxidation. Biochem J 294: 829–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mackness MJ, Arrol S, Abbott C, Durrington PN (1993) Protection of low density lipoprotein against oxidative modification of high density lipoprotein associated para-oxinase. Atherosclerosis 104: 129–135

    Article  CAS  PubMed  Google Scholar 

  14. Mackness MJ, Harty D, Bhatnagar D et al. (1991) Serum paraoxinase activity in familial hypercholesterolaemia and insulin-dependent diabetes mellitus. Atherosclerosis 86: 103–109

    Article  Google Scholar 

  15. Harats D, Ben-Naim M, Dabach Y, Hollander G, Stein O, Stein Y (1989) Cigarette smoking renders LDL susceptible to peroxidative modification and enhanced metabolism by macrophages. Atherosclerosis 79: 245–252

    Article  CAS  PubMed  Google Scholar 

  16. Markwell MAK, Hass SM, Bieber LL, Tolbert NE (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87: 206–210

    Article  CAS  PubMed  Google Scholar 

  17. Havel RA, Eder HM, Brydon JH (1985) The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest 34: 1345–1353

    Article  Google Scholar 

  18. Folch J, Lees M, Sloane SGH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226: 479–509

    Google Scholar 

  19. Sattler W, Puhl W, Kostner GM, Esterbauer H (1991) Determination of fatty acids in the main lipoprotein classes by capillary gas chromatography: BF3/Methanol transes-terification of lyophilised samples instead of Folch extraction gives higher yields. Anal Biochem 198: 184–190

    Article  CAS  PubMed  Google Scholar 

  20. Esterbauer H, Striegel G, Puhl H, Kothender M (1989) Continuous monitoring of in vitro oxidation of human low density lipoproteins. Free Radical Res Commun 6: 67–75

    Article  CAS  Google Scholar 

  21. Croft KD, Williams P, Dimmitt S, Abu-Amsha R, Beilin LJ (1994) Oxidation of low-density lipoproteins: effect of anti-oxidant content, fatty acid composition and intrinsic phos-pholipase activity on susceptibility to metal ion-induced oxidation. Biochim Biophys Acta 1254: 250–256

    Article  Google Scholar 

  22. El-Saadani M, Esterbauer H, El-Sayed M, Goher M, Nassar AY, Jurgens G (1989) A spectrophotometric assay for the lipid peroxides in serum lipoproteins using a commercially available reagent. J Lipid Res 30: 627–630

    CAS  PubMed  Google Scholar 

  23. Kaplan LA, Miller JA, Stein EA (1987) Simultaneous measurement of serum retinol, tocopherols, carotenes and carotenoids by high performance liquid chromatography. J Clin Lab Anal 1: 147–152

    Article  CAS  Google Scholar 

  24. Jack CM, Sheridan B, Kennedy L, Stout RW (1988) Nonenzymatic glycosylation of low density lipoproteins. Results of an affinity chromatography method. Diabetologia 31: 126–127

    Article  CAS  PubMed  Google Scholar 

  25. Nikkari T (1986) Serum fatty acids and coronary heart disease in Finnish populations. Prog Lipid Res 25: 437–450

    Article  CAS  PubMed  Google Scholar 

  26. Collier A, Wilson R, Bradley H, Thompson JA, Small MS (1990) Free radical activity in type 2 diabetes. Diabet Med 7: 27–30

    Article  CAS  PubMed  Google Scholar 

  27. Esterbauer H, Gebicki J, Puhl H, Jurgens G (1992) The role of lipid peroxidation and antioxidants in the oxidative modification of LDL. Free Radical Biol Med 13(4): 341–350

    Article  CAS  Google Scholar 

  28. Parthasarathy S, Khoo JC, Miller E, Barnett J, Witztum JL, Steinberg D (1990) Low density lipoprotein rich in oleic acid is protected against oxidative modification: implications for dietary prevention of atherosclerosis. Proc Natl Acad Sci USA 87: 3894–3898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Varma SP, Philippot JR, Bonnet B et al. (1990) Structural abnormalities in LDL from diabetic patients as revealed by Raman spectroscopy. Diabetes 39: 1451–1456

    Article  Google Scholar 

  30. Sato Y, Hotta N, Sakamoto N et al. (1979) Lipid peroxide level in plasma of diabetic patients. Biochim Med 21: 104–107

    Article  CAS  Google Scholar 

  31. Nishigaki I, Hagihara M, Tsunekawa H, Maseki M, Yagi K (1991) Lipid peroxide levels of serum lipoproteins of diabetic patients. Biochem Med 25: 373–378

    Article  Google Scholar 

  32. Nourooz-Zadeh J, Tajaddani-Saramadi J, McCarthy S, Betteridge DJ, Wolff SP (1995) Elevated levels of authentic hydroperoxides in NIDDM. Diabetes 44: 1054–1058

    Article  CAS  PubMed  Google Scholar 

  33. Frei B, Gaziano JMS (1993) Content of antioxidants, preformed lipid peroxides and cholesterol as predictors of the susceptibility of human LDL to metal ion-dependent and independent oxidation. J Lipid Res 34: 2135–2145

    CAS  PubMed  Google Scholar 

  34. Mullarkey CJ, Edelstein D, Brownlee M (1990) Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochim Biophys Res Commun 173: 932–939

    Article  CAS  Google Scholar 

  35. Wolff SP (1993) Diabetes mellitus and free radicals. Free radicals, transition metals and oxidative stress in the aetiology of diabetes mellitus and complications. Br Med Bull 49: 642–652

    CAS  PubMed  Google Scholar 

  36. Hunt J, Smith CCT, Wolff SP (1990) Autoxidative glycosylation and possible involvement of peroxides and free radicals in LDL modification by glucose. Diabetes 39: 1420–1424

    Article  CAS  PubMed  Google Scholar 

  37. Niskanen LK, Salonen JT, Myyssonen K, Uusitupa MIJ (1995) Plasma lipid peroxidation and peroxidation; a connection through hyperinsulinaemia. Diabet Med 12: 802–808

    Article  CAS  PubMed  Google Scholar 

  38. Ruiz J, Blanche H, James RW et al. (1995) Gln-Argl92 polymorphism of paraoxonase and coronary heart disease in type 2 diabetes. Lancet 346: 869–872

    Article  CAS  PubMed  Google Scholar 

  39. Borkman M, Storlien LH, Pan DA, Jenkins AB, Chisholm DJ, Campbell LV (1993) The relation between insulin-sensitivity and fatty acid composition of skeletal muscle phospholipids. N Engl J Med 328: 238–244

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimitriadis, E., Griffin, M., Collins, P. et al. Lipoprotein composition in NIDDM: effects of dietary oleic acid on the composition, oxidisability and function of low and high density lipoproteins. Diabetologia 39, 667–676 (1996). https://doi.org/10.1007/BF00418538

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00418538

Keywords

Navigation