Skip to main content
Log in

The “Torus-Flux” motor — a novel permanent magnet synchronous machine

Der “Torus-Fluß” — Motor — eine neuartige permanentmagneterregte Synchronmaschine

  • Published:
Electrical Engineering Aims and scope Submit manuscript

Contents

An ironless permanent magnet synchronous machine with a toruslike armature is presented and its inverter-fed motor performance is discussed. The calculation of the three-dimensional flux density distribution is accomplished by analytical and numerical methods. Test motor experimental results are used to check these calculations. A comparison with permanent magnet motors with cylindrical rotor and surface mounted magnets shows that for the same rated data the “Torus-flux” motor needs a higher amount of magnetic material and armature copper.

Übersicht

Eine eisenlose permanentmagneterregte Synchronmaschine mit einer torusähnlich geformten Ständerwicklung wird vorgestellt; ihre Eigenschaften als umrichtergespeister Motor werden erläutert. Die Berechnung der dreidimensionalen Feldverteilung wird sowohl analytisch als auch numerisch durchgeführt. Die Berechnungsergebnisse werden mit Meßdaten eines Versuchsmotors überprüft. Ein Vergleich mit permanentmagneterregten Synchronmotoren mit herkömmlichem Zylinderläufer und Luftspaltmagneten zeigt, daß der “Torus-Fluß”-Motor für dieselben Bemessungsdaten mehr Magnetmaterial und Wicklungskupfer benötigt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

number of parallel paths per phase

A A/m:

electric loading

A Cu m2 :

cross-section of the armature copper wire

B r T:

radial component of magnetic flux density

B R T:

remanence of permanent magnets

C e W·s/m3 :

(Esson) output coefficient

d se m:

outer diameter of the stator

E V/m:

electric field strength

f Hz:

electric frequency

F N:

force

h a m:

height of armature coil

k d m:

distribution factor

i A:

current per turn

I A:

current per phase (rms-value)

I dc A:

d.c.-link current

l a m:

average conductor length of half a turn (without winding overhangs)

l b m:

average conductor length of the winding overhangs

l Fe m:

iron length

L m:

axial motor length including winding overhangs

m Fe,s+r kg:

mass of laminated stator and rotor iron

m Cu kg:

mass of armature copper

M A/m:

magnetization

M e Nm:

electromagnetic torque

M S Nm:

shaft torque

n 1/s:

rotational speed

N ph 1/s:

number of turns in series per phase (subscript z: per zone)

p 1/s:

number of pole pairs

P ad W:

additional losses (subscript 0: no-load, 1: load)

P fr W:

friction and windage losses

P Fe W:

iron losses

P in W:

input power

P inv W:

inverter losses

P out W:

output power

P δ W:

air-gap power

r m:

radial coordinate

r av m:

average turn radius

R ph Ω:

armature resistance per phase

S A/mm2 :

current density

t s:

time

u i V:

induced voltage

U i V:

rms-value of induced voltage

U dc V:

d.c.-link voltage

v m/s:

circumferential speed of rotor disk

V M m3 :

volume of magnets

z m:

circumferential coordinate

δ m:

air-gap length

θ rad:

angle of rotation

κ S/m:

electrical conductivity

λ S/m:

ordinal number of current harmonic

μ0 Vs/(Am):

magnetic permeability of vacuum

ν Vs/(Am):

ordinal number of a spatial harmonic

τ p m:

pole pitch

ϕ rad:

circumferential angle of an armature turn

Φ Wb:

magnetic flux

References

  1. The T-Flux Motor, Australian Patent Ref.-Pct/AU94/0405. Lillington Manufacturing Pty. Ltd.: Midomac Australia

  2. Hofmann, H.: Das elektromagnetische Feld. Wien, New York: Springer 1974

    Google Scholar 

  3. Vogt, K.: Berechnung rotierender elektrischer Maschinen. Berlin: VEB Technik, 1992

    Google Scholar 

  4. Prechtl, A.: Felder und Kräfte in Zylinderspulen. Arch. f. Elektrotechnik 66 (1983) 351–364

    Google Scholar 

  5. Yaksh, M.: ANSYS Magnetics User's Guide for revision 5.0. Houston: Swanson Analysis Systems, Inc. 1993

    Google Scholar 

  6. Huth, G.: Grenzkennlinien von Drehstrom-Servoantrieben in Blockstromtechnik. etz-Archiv 11 (1989) 401–408

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binder, A. The “Torus-Flux” motor — a novel permanent magnet synchronous machine. Electrical Engineering 79, 31–38 (1996). https://doi.org/10.1007/BF01840705

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01840705

Keywords

Navigation