Skip to main content
Log in

Control of the chemotactic behavior of Bacillus subtilis cells

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The effects of nigericin, valinomycin and some lipophilic cations on the motile behavior of non-starved and methionine-starved Bacillus subtilis cells were studied. For valinomycin and nigericin a quantitative relationship between the flux in the proton-motive force and the duration of the twiddle response was found. Lipophilic cations bind to the ion gate controlling the twiddle frequency and thereby cause the cells to swim smoothly. To explain the transmission of the chemotactic signal a model is given in which receptors, a hyperpolarizing wave, an ion gate and two methylation sites, viz. methyl-accepting chemotaxis proteins and a further methylation site (MT), play a role. For the transmission of the signal caused by an attractant both the hyperpolarizing wave and an interaction between receptor and methylation site (MT) are needed. The methyl-accepting chemotaxis proteins are involved in the adaptation/deadaptation to altered levels of attractant. Artificial changes in the proton-motive force act directly on the ion gate, which finally controlls the twiddle frequency of the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

KT medium:

potassium taxis medium

NAT medium:

sodium taxis medium

HT medium:

acidic taxis medium

OHT medium:

alkaline taxis medium

ImT medium:

imidazole taxis medium

GT medium:

glycylgycine taxis medium

Di-S-C3(5):

3,3′-dipropyl-2,2′-thiacarbocyanine iodide

TPAs+ :

tetraphenylarsonium ion

TPMP+ :

triphenylmethylphosphonium ion

DDA+ :

dibenzyldimethylammonium ion

TPB- :

tetraphenylboron ion

pmf:

proton-motive force

MCP:

methyl-accepting chemotaxis protein

MT:

methylation site

Δψ:

membrane potential

References

  • De Jong, M. H., van der Drift, C., Vogels, G. D.: Proton-motive force and the motile behavior of Bacillus subtilis. Arch. Microbiol. 111, 7–11 (1976)

    Google Scholar 

  • De Jong, M. H., van der Drift, C., Stumm, C., Arends, J. J. A.: The effects of amino acids on the motile behavior of Bacillus subtilis. Arch. Microbiol. 113, 153–158 (1977)

    Google Scholar 

  • Kashket, E. R., Wilson, T. H.: Protonmotive force in fermenting Streptococcus lactis 7962 in relation to sugar accumulation. Biochem. Biophys. Res. Commun. 59, 879–886 (1974)

    Google Scholar 

  • Kort, E. N., Goy, M. F., Larsen, S. H., Adler, J.: Methylation of a membrane protein involved in bacterial chemotaxis. Proc. Natl. Acad. Sci. (Wash.) 72, 3939–3943 (1975)

    Google Scholar 

  • Maloney, P. C., Wilson, T. H.: ATP synthesis driven by a protonmotive force in Streptococcus lactis. J. Membrane Biol. 25, 285–310 (1975)

    Google Scholar 

  • Manson, M. D., Tedesco, P., Berg, H. C., Harold, F. M., van der Drift, C.: A protonmotive force drives bacterial flagella. Proc. Natl. Acad. Sci. (Wash.) 74, 3060–3064 (1977)

    Google Scholar 

  • Ordal, G. W.: Control of tumbling in bacterial chemotaxis by divalent cation. J. Bacteirol. 126, 706–711 (1976).

    Google Scholar 

  • Padan, E., Zilberstein, D., Rottenberg, H.: The proton electrochemical gradient in Escherichia coli cells. Eur. J. Biochem. 63, 533–541 (1976)

    Google Scholar 

  • Ramos, S., Schuldiner, S., Kaback, H. R.: The electrochemical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles. Proc. Natl. Acad. Sci. (Wash.) 73, 1892–1896 (1976)

    Google Scholar 

  • Rubik, B. A., Koshland, D. E., Jr.: Relationships of multiple stimuli from different receptor classes in bacterial chemotaxis. Fed. Proc. 36, 797 (abstract 2761) (1977)

    Google Scholar 

  • Silverman, M., Matsumura, P., Hilmen, M., Simon, M.: Characterization of lambda Escherichia coli hybrids carrying chemotaxis genes. J. Bacteriol. 130, 877–887 (1977)

    Google Scholar 

  • Sims, P. J., Waggoner, A. S., Wang, C.-H., Hoffman, J.F.: Studies on the mechanism by which cyanine dyes measure the membrane potential in red blood cells and phosphatidylcholine vesicles. Biochemistry 13, 3315–3328 (1974)

    Google Scholar 

  • Springer, M. S., Goy, M. F., Adler, J.: Sensory transduction in Escherichia coli: A requirement for methionine in sensory adaptation. Proc. Natl. Acad. Sci. (Wash.) 74, 183–187 (1977)

    Google Scholar 

  • Springer, W. R., Koshland, D. E., Jr.: Identification of a protein methyltransferase as the cheR gene product in the bacterial sensing system. Proc. Natl. Acad. Sci. (Wash.) 74, 533–537 (1977)

    Google Scholar 

  • Szmelcman, S., Adler, J.: Change in membrane potential during bacterial chemotaxis. Proc. Natl. Acad. Sci. (Wash.) 73, 4387–4391 (1976)

    Google Scholar 

  • Waggoner, A.: Optical probes of membrane potential. J. Membrane Biol. 27, 317–334 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Jong, M.H., Van Der Drift, C. Control of the chemotactic behavior of Bacillus subtilis cells. Arch. Microbiol. 116, 1–8 (1978). https://doi.org/10.1007/BF00408727

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00408727

Key words

Navigation