Skip to main content
Log in

Metabolism of the anaerobic formation of succinic acid bySaccharomyces cerevisiae

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

  1. 1.

    Succinic acid is formed in amounts of 0.2–1.7 g/l by fermenting yeasts of the genusSaccharomyces during the exponential growth phase. No differences were observed between the various species, respiratory deficient mutants and wild type strains.

  2. 2.

    At low glucose concentrations the formation of succinic acid depended on the amount of sugar fermented. However, the nitrogen source was found to be of greater importance than the carbon source.

  3. 3.

    Of all nitrogen sources, glutamate yielded the highest amounts of succinic acid. Glutamate led to an oxidative and aspartate to a reductive formation of succinic acid.

  4. 4.

    A reductive formation of succinic acid by the citric acid cycle enzymes was observed with malate. This was partially inhibited by malonate. No evidence was obtained that the glyoxylate cycle is involved in succinic acid formation by yeasts.

  5. 5.

    Anaerobically grown cells ofSaccharomyces cerevisiae contained α-ketoglutarate dehydrogenase. Its activity was found in the 175000 x g sediment after fractionated centrifugation. The specific activity increased 6-fold after growth on glutamate as compared with cells grown on ammonium sulfate.

  6. 6.

    The specific activities of malate dehydrogenase, fumarase, succinate dehydrogenase, succinylcoenzymeA synthetase, α-ketoglutarate dehydrogenase and glutamate dehydrogenase (nicotinamide adenine dinucleotide dependent) were determined in yeast cells grown on glutamate or ammonium sulfate. Similar results were obtained with a wild type strain and a respiratory deficient mutant. The latter did not contain succinate dehydrogenase.

  7. 7.

    In fermenting yeasts succinic acid is mainly formed from glutamate by oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CoA:

coenzyme A

EDTA:

ethylenediaminetetraacetic acid

MTE:

mannitol-Tris-SO4-EDTA

TPP:

thiamine pyrophosphate

YEP:

yeast extract peptone

References

  • Bergmeyer, H. U., Bernt, E.: α-Ketoglutarat, UV-spektrophotometrische Bestimmung. In: Methoden der enzymatischen Analyse, Vol. 2 (H. U. Bergmeyer, ed.), pp. 1536–1539. Weinheim: Verlag Chemie 1970

    Google Scholar 

  • Castino, M.: L'acido succinico nei vini. II. Fattori che ne conditionano la formazione. Vini Ital.67, 289–297 (1970)

    Google Scholar 

  • Cha, S., Parks, R. E.: Succinic thiokinase. I. Purification of the enzyme from pig heart. J. Biol. Chem.239, 1961–1977 (1964)

    Google Scholar 

  • Chapman, C., Bartley, W.: The kinetics of enzyme changes in yeast under conditions that cause the loss of mitochondria. Biochem. J.107, 455–465 (1968)

    Google Scholar 

  • Coote, N., Kirsop, H.: Content of some organic acids in beer and other fermented media. J. Inst. Brew.80, 474–482 (1974)

    Google Scholar 

  • Doherty, D.:l-glutamate dehydrogenases (yeast.). In: Methods in enzymology, Vol. 17A (S. P. Colowick, N. O. Kaplan, eds.), pp. 850–856 New York-London: Academic Press 1970

    Google Scholar 

  • Duntze, D.: Neumann, D., Gancedo, J. M., Atzpodien, W., Holzer, H.: Studies on the regulation and localization of the glyoxylate cycle enzymes inSaccharomyces cerevisiae. Eur. J. Biochem.10, 83–89 (1969)

    Google Scholar 

  • Duteurtre, B., Boureois, C., Chollot, B.: Study of the assimilation of proline by brewing yeasts. J. Inst. Brew.77, 28–35 (1971)

    Google Scholar 

  • Fuck, E., Radler, F.: Äpfelsäurestoffwechsel beiSaccharomyces. I. Der anaerobe Äpfelsäureabbau beiSaccharomyces cerevisiae. Arch. Mikrobiol87, 149–164 (1972)

    Google Scholar 

  • Harmon, M., Doelle, H. W.: Gaschromatographic separation and determination of microquantities of the esters of the tricarboxylic acid cycle and related compounds. J. Chromatogr.42, 157–169 (1969)

    Google Scholar 

  • Hauber, J., Singer, T. P.: Studies on succinate dehydrogenase. 14. Intracellular distribution, catalytic properties and regulation of fumarate reductase in yeast. Eur. J. Biochem.3, 107–116 (1967)

    Google Scholar 

  • Hierholzer, G., Holzer, H.: Repression der Synthese von DPN-abhängiger Glutaminsäure-Dehydrogenase inSaccharomyces cerevisiae durch Ammoniumionen. Biochem. Z.339, 175–183 (1963)

    Google Scholar 

  • Hill, R. L., Bradshaw, R. A.: Fumarase. In: Methods in enzymology, Vol. 13 (S. P. Colowick, N. O. Kaplan, eds.), pp. 91–99. New York-London: Academic Press 1969

    Google Scholar 

  • Hohorst, H. J.:l(-)-Malat. Bestimmung mit Malat-Dehydrogenase und NAD. In: Methoden der enzymatischen Analyse, Vol. 2 (H. U. Bergmeyer, ed.), pp. 1544–1548. Weinheim: Verlag Chemie 1970

    Google Scholar 

  • Holzer, H., Hierholzer, G.: Witt, J.: α-Ketoglutaratoxydase aus Hefe. Biochem. Z.337, 115–119 (1963)

    Google Scholar 

  • King, T. E.: Reconstitution of respiratory chain enzyme systems. 11. Use of artificial electron acceptors in the assay of succinate dehydrogenating enzymes. J. Biol. Chem.238, 4032–4036 (1963)

    Google Scholar 

  • Kleinzeller, A.: The formation of succinic acid in yeast. Biochem. J.35, 495–501 (1941)

    Google Scholar 

  • Lafon-Lafourcade, S., Peynaud, E.: Sur les taux des acides cétoniques formés au cours de la fermentation alcoolique. Ann. Inst. Pasteur110, 766–778 (1966)

    Google Scholar 

  • La Riviere, J. W. M.: On the microbial metabolism of the tartaric acid isomers. Thesis, Univ. Delft (1958)

  • Lewis, M. J., Rainbow, C.: Transamination and the liberation of 2-oxoglutarate by yeast. J. Inst. Brew.69, 39–45 (1963)

    Google Scholar 

  • Mayer, K., Busch, I., Pause, G.: Über die Bernsteinsäurebildung während der Weingärung. Z. Lebensm. Unters. Forsch125, 375–381 (1964)

    Google Scholar 

  • Ochoa, S.: “Malic”-enzyme fromLactobacillus arabinosus. In: Methods in enzymology, Vol. 1 (S. P. Colowick, N. O. Kaplan, eds.), pp. 748–753. New York-London: Academic Press 1955

    Google Scholar 

  • Oura, E.: The formation of glycerol and succinic acid during fermentation by yeast. In: Fifth international fermentation symposium (H. Dellweg, ed.), p. 469, Berlin: Verlag Versuchs-u. Lehranstalt für Spiritusfabrikation u. Fermentationstechnologie 1976

    Google Scholar 

  • Oura, E.: Reaction products of yeast fermentations. Process Biochem.12, 19–21 (1977)

    Google Scholar 

  • Pasteur, L.: Memoiresur la fermentation alcoolique. Annales Chim. Phys. Troisième Serie58, 323–426 (1860)

    Google Scholar 

  • Perlman, P. S., Mahler, H. R.: Derepression of mitochondria and their enzymes in yeast: Regulatory aspects. Arch. Biochem. Biophys.162, 248–271 (1974)

    Google Scholar 

  • Ribéreau-Gayon, J., Peynaud, E., Guimberteau, G.: Formation des produits secondaires de la fermentation alcoolique en fonction de l'alimentation azotée des levures. Compt. Rend. Acad. Sci. (Paris)248, 749–751 (1959)

    Google Scholar 

  • Schatz, G., Racker, E.: Stable phosphorylating submitochondrial particles from baker's yeast. Biochem. Biophys. Res. Commun.22, 579–584 (1966)

    Google Scholar 

  • Sols, A., Gancedo, C., Dela Fuente, G.: Energy-yielding metabolism in yeast. In: The yeast, Vol. 2 (H. A. Rose, J. S. Harrison, eds.), pp. 270–308. London-New York: Academic Press 1971

    Google Scholar 

  • Sols, A., Gancedo, C., Dela Fuente, G.: Energy-yielding metabolism in yeast. In: The yeast, Vol. 2 (H. A. Rose, J. S. Harrison, eds.), pp. 270–308. London-New York: Academic Press 1971

    Google Scholar 

  • Sponholz, W. R., Dittrich, H. H.: Enzymatische Bestimmung von Bernsteinsäure in Mosten und Weinen. Wein-Wiss.32, 38–47 (1977)

    Google Scholar 

  • Suomalainen, H., Konttinen, K., Oura, E.: Decarboxylation by intact yeast and pyruvate decarboxylase of some derivatives of pyruvic acid and ketoglutaric acid. Arch. Mikrobiol.64, 251–261 (1969)

    Google Scholar 

  • Suomalainen, H., Oura, E.: Yeast nutrition and solute uptake. In: The yeasts, Vol. 2 (H. A. Rose, J. S. Harrison, eds.), pp. 3–74. London-New York: Academic Press 1971

    Google Scholar 

  • Thauer, R. K., Jungermann, K., Decker, K.: Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev.41, 100–180 (1977)

    Google Scholar 

  • Thoukis, G., Ueda, M., Wright, D.: The formation of succinic acid during fermentation. Am. J. Enol. Vitic.16, 1–8 (1965)

    Google Scholar 

  • Tisdale, H., Hauber, J., Parger, G., Turini, P., Singer, T. P.: Studies on succinate dehydrogenase. 15. Isolation, molecular properties, and isoenzymes of fumarate reductase. Eur. J. Biochem.4, 472–477 (1968)

    Google Scholar 

  • Vollbrecht, D., Radler, F.: Die Bildung höherer Alkohole bei Aminosäuremangelmutanten vonSaccharomyces cerevisiae. I. Der Abbau von Aminosäuren zu höheren Alkoholen. Arch. Mikrobiol.94, 351–358 (1973)

    Google Scholar 

  • Wagener, W. W. D., Ough, C. S., Amerine, M. A.: The fate of some organic acids added to grape juice prior to fermentation. Am. J. Enol. Vitic.22, 167–171 (1971)

    Google Scholar 

  • Watson, K., Haslam, J. M., Linnane, A. W.: Biogenesis of mitochondria. 13. The isolation of mitochondrial structures from anaerobically grownSaccharomyces cerevisiae. J. Cell Biol.46, 88–96 (1970)

    Google Scholar 

  • Weiller, H. G., Radler, F.: Über den Aminosäurestoffwechesel von Milchsäurebakterien aus Wein. Z. Lebensm. Unters. Forsch.161, 259–266 (1976)

    Google Scholar 

  • Whiting, G. C.: Organic acid metabolism of yeast during fermentation of alcoholic beverages. J. Inst. Brew.82, 84–92 (1976)

    Google Scholar 

  • Witt, I., Weiler, P. G., Holzer, H.: Steigerung der CO2-Fixierung in Glucose oxidierender Bäckerhefe. Biochem. Z.339, 331–337 (1964)

    Google Scholar 

  • Witt, I., Holzer, H.: Hauptweg des NH +4 -Einbaus in Glucose oxidierender Bäckerhefe. Biochem. Z.339, 255–265 (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heerde, E., Radler, F. Metabolism of the anaerobic formation of succinic acid bySaccharomyces cerevisiae . Arch. Microbiol. 117, 269–276 (1978). https://doi.org/10.1007/BF00738546

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00738546

Key words

Navigation