Skip to main content
Log in

Carbon isotope fractionation by Methanobacterium thermoautotrophicum

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The fractionation of carbon isotopes by Methanobacterium thermoautotrophicum was studied during growth of the bacterium on H2 plus CO2 as sole carbon and energy sources. A 80% H2/20% CO2 gas mixture was continuously bubbled through the culture. At high gassing rates, in the absence of a “closed system effect”, cells and methane were found to be depleted in 13C relative to CO2 in the gas mixture by 2.4% and 3.4%, respectively. At low gassing rates, when more than 90% of the CO2 was converted to methane, the cells were enriched in 13C by 1.3% and methane was depleted in 13C by 0.5%; residual CO2 was enriched in 13C by 3.4%. The magnitude of isotope fractionation suggests that CO2 rather than bicarbonate is the active species of CO2 mainly utilized in both CO2 assimilation and CO2 reduction to methane. The apparent positive 13C-discrimination in cell carbon synthesis, which was observed at low gassing rates, indicates that most of the CO2 assimilated into cell material is not incorporated via reactions involved in CO2 reduction to methane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bender, M. M.: Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10, 1239–1244 (1971)

    Google Scholar 

  • Berry, J. A., Throughton, J., Bjørkman, O. E.: Carbon isotope fractionation in open and closed systems. Carnegie Inst. Year Book 73, 785–790 (1974)

    Google Scholar 

  • Cooper, T. G., Filmer, D., Wishnick, M., Lane, M. D.: The active species of “CO2” utilized by ribulose diphosphate carboxylase. J. biol. Chem. 244, 1081–1083 (1969)

    Google Scholar 

  • Cooper, T. G., Tehen, T. T., Wood, H. G., Benedict, C. R.: The carboxylation of phosphoenolpyruvate and pyruvate. I. The active species of “CO2” utilized by phosphoenol-pyruvate carboxykinase, carboxytransphosphorylase, and pyruvate carboxylase. J. biol. Chem. 243, 3857–3863 (1968)

    Google Scholar 

  • Cooper, T. G., Wood, H. G.: The carboxylation of phosphoenolpyruvate and pyruvate. II. The active species of “CO2” utilized by phosphoenolpyruvate carboxylase, and pyruvate carboxylase. J. biol. Chem. 246, 5488–5490 (1971)

    Google Scholar 

  • Craig, H.: Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochim. Cosmophys. Acta 12, 133–149 (1957)

    Google Scholar 

  • Craig, H.: Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133, 1833–1834 (1961)

    Google Scholar 

  • Deuser, W. G., Degens, E. T.: Carbon isotope fractionation in the system CO2 (gas) — CO2 (aqueous) — HCO -3 (aqueous). Nature 215, 1033–1035 (1967)

    Google Scholar 

  • Ehhalt, D. H., Volz, A.: Coupling of the CH4 with the H2 and CO cycle: Isotopic evidence. In: Proceedings of the symposium “Microbial production and utilization of gases (H2, CH4, CO)” (H. G. Schlegel, G. Gottschalk, N. Pfennig, eds.), pp. 23–33, Akademie der Wissenschaften zu Göttingen. Göttingen: Goltze 1976

    Google Scholar 

  • Fuchs, G., Stupperich, E.: Evidence for an incomplete reductive carboxylic acid cycle in Methanobacterium thermoautotrophicum. Arch. Microbiol. 118, 121–125 (1978)

    Google Scholar 

  • Fuchs, G., Stupperich, E., Thauer, R. K.: Acetate assimilation and the synthesis of alanine, aspartate and glutamate in Methanobacterium thermoautotrophicum. Arch. Microbiol. 117, 61–66 (1978)

    Google Scholar 

  • Hatch, M. D., Slack, R. C.: Photosynthetic CO2 fixation pathways. Annu. Rev. Plant Physiol. 21, 141–162 (1970)

    Google Scholar 

  • Ivanov, M. V., Belyaev, S. S., Laurinavichus, K. S.: Methods of quantitative investigation of microbial production and utilization of methane. In: Proceedings of the symposium “Microbial production and utilization of gases (H2, CH4, CO)” (H. G. Schlegel, G. Gottschalk, N. Pfennig. eds.), pp. 63–67, Akademie der Wissenschaften zu Göttingen. Göttingen: Golte 1976

    Google Scholar 

  • Kaziro, Y., Hass, L. F., Boyer, P. D., Ochoa, S.: Mechanism of the propionyl carboxylase reaction. J. Biol. Chem. 237, 1460–1468 (1962)

    Google Scholar 

  • Krebs, H. A., Roughton, F. J. W.: Carbonic anhydrase as a tool in studying the mechanisms of reactions involving H2CO3, HCO -3 or CO2. Biochem. J. 43, 550–555 (1948)

    Google Scholar 

  • Kröger, A.: The electron transport-coupled phosphorylation of the anaerobic bacterium Vibrio succinogenes. In: Electron transfer chains and oxidative phosphorylative phosphorylation (E. Quaglieriell, S. Papa, F. Palmieri, E. Slater, N. Siliprandi, eds.), pp. 265–270. Amsterdam. North-Holland 1975

    Google Scholar 

  • Maruyama, H., Easterday, R. L., Chang, H.-C., Lane, M. C.: The enzymatic carboxylation of phosphoenolpyruvate. I. Purification and properties of phosphoenolpyruvate carboxylase. J. Biol. Chem. 241, 2405–2412 (1966)

    Google Scholar 

  • Osmond, C. B., Ziegler, H., Stichler, W., Trimborn, G.: Carbon isotope discrimination in alpine succulent plants supposed to be capable of crassulacean acid metabolism (CAM). Oecologia (Berl.) 18, 209–217 (1975)

    Google Scholar 

  • Park, R., Epstein, S.: Carbon isotope fractionation during photosynthesis. Geochim. Cosmochim. Acta 21, 110–126 (1960)

    Google Scholar 

  • Quandt, L., Gottschalk, G., Ziegler, H., Stichler, W.: Isotope discrimination by photosynthetic bacteria. FEMS Microbiol. Lett. 1, 125–128 (1977)

    Google Scholar 

  • Rosenfeld, W. D., Silverman, S. R.: Carbon isotope fractionation in bacterial production of methane. Science 130, 1658–1659 (1959)

    Google Scholar 

  • Ruschig, U., Müller, U., Willnow, P., Höpner, T.: CO2 reduction to formate by NADH catalysed by formate dehydrogenase from Pseudomonas oxalaticus. Eur. J. Biochem. 70, 325–330 (1976)

    Google Scholar 

  • Schiegl, W. E., Vogel, J. C.: Deuterium content of organic matter. Earth planet. Sci. Lett. 7, 307–313 (1970)

    Google Scholar 

  • Silverman, M. P., Oyama, V. I.: Automatic apparatus for sampling and preparing gases for mass spectral analysis in studies of carbon isotope fractionation during methane metabolism. Anal. Chem. 40, 1833–1837 (1968)

    Google Scholar 

  • Simon, H. (ed.): Messung von radioaktiven und stabilen Isotopen, pp. 308–311, Berlin-Heidelberg-New York: Springer 1974

    Google Scholar 

  • Simon, H., Palm, D.: Isotope effects in organic chemistry and biochemistry, Angew. Chem. 5, 920–933 (1966)

    Google Scholar 

  • Sirevåg, R., Buchanan, B. B., Berry, J. A., Throughton, J. H.: Mechanisms of CO2 fixation in bacterial photosynthesis studied by the carbon isotope fractionation technique. Arch. Microbiol. 112, 35–38 (1977)

    Google Scholar 

  • Smith, B. N., Epstein, S.: Biochemistry of the stable isotopes of hydrogen and carbon in salt marsh biota. Plant Physiol. 46, 738–742 (1970)

    Google Scholar 

  • Smith, B. N., Epstein, S.: Two categories of 13C/12C ratios for higher plants. Plant Physiol. 47, 380–384 (1971)

    Google Scholar 

  • Taylor, G. T., Kelly, D. P., Pirt, G. J.: Intermediary metabolism in methanogenic bacteria. In: Proceedings of the symposium “Microbial production and utilization of gases (H2, CH4, CO)” (H. G. Schlegel, G. Gottschalk, N. Pfennig, eds.), pp. 173–180 Akademie der Wissenschaften zu Göttingen. Göttingen: Goltze 1976

    Google Scholar 

  • Thauer, R. K., Käufer, B., Fuchs, G.: The active species of “CO2” utilized by reduced ferredoxin: CO2 oxidoreductase from Clostridium pasteurianum. Eur. J. Biochem. 55, 111–117 (1975a)

    Google Scholar 

  • Thauer, R. K., Käufer, B., Scherer, P.: The active species of “CO2” utilized in ferredoxin linked carboxylation reactions. Arch. Microbiol. 104, 237–240 (1975b)

    Google Scholar 

  • Throughton, J. H., Card, K. A., Hendy, C. H.: Photosynthetic pathway and carbon isotope discrimination by plants. Carnegie Inst. Year Book 73, 768–780 (1974)

    Google Scholar 

  • Waygood, E. R., Mache, R., Tan, C. K.: Carbon dioxide, the substrate for phosphoenolpyruvate carboxylase from leaves of maize. Canad. J. Bot. 47, 1455–1458 (1969)

    Google Scholar 

  • Whelan, T., Sackett, W. M., Benedict, C. R.: Enzymatic fractionation of carbon isotopes by phosphoenolpyruvate carboxylase from C4 plants. Plant Physiol. 51, 1051–1054 (1973)

    Google Scholar 

  • Wong, W., Sackett, W. M., Benediet, C. R.: Isotope fractionation of photosynthetic bacteria during carbon dioxide assimilation. Plant. Physiol. 55, 475–479 (1975)

    Google Scholar 

  • Zeikus, J. G.: The biology of methanogenic bacteria. Bact. Rev. 41, 514–541 (1977)

    Google Scholar 

  • Zeikus, J. G., Wolfe, R. S.: Methanobacterium thermoautotrophicum sp. n., an anaerobic extreme thermophile. J. Bacteriol. 109, 707–713 (1972)

    Google Scholar 

  • Zeikus, J. G., Fuchs, G., Kenealy, W., Thauer, R. K.: Oxidoreductases involved in cell carbon synthesis of Methanobacterium thermoautotrophicum. J. Bacteriol. 132, 604–613 (1977)

    Google Scholar 

  • Ziegler, H., Osmond, C. B., Stichler, W., Trimborn, P.: Hydrogen isotope discrimination in higher plants: Correlation with photosynthetic pathway and environment. Planta (Berl.) 128, 85–92 (1976)

    Google Scholar 

  • Zyakum, A. M., Gogotova, G. I., Bondar, V. A.: Carbon isotope fractionation of carbon dioxide by phototrophs. In: Abstracts of symposium “Microbial Growth on C1-compounds”, pp. 150–152, Scientific Center for Biological Research, Pushchino, USSR Academy of Sciences (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuchs, G., Thauer, R., Ziegler, H. et al. Carbon isotope fractionation by Methanobacterium thermoautotrophicum . Arch. Microbiol. 120, 135–139 (1979). https://doi.org/10.1007/BF00409099

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00409099

Key words

Navigation