Skip to main content
Log in

Selenium requirement for active xanthine dehydrogenase from Clostridium acidiurici and Clostridium cylindrosporum

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The xanthine dehydrogenase of Clostridium acidiurici and C. cylindrosporum was assayed with methyl viologen as acceptor. In C. acidiurici the basal activity level was about 0.3 μmol/min x mg of protein. Cells grown on uric acid in the presence of 10-7 M selenite showed a 14-fold increase in xanthine dehydrogenase activity, which decreased with higher selenite concentrations (10-5 M). The supplementation with 10-7 M molybdate or tungstate was without effect. High concentrations of tungstate decreased the xanthine dehydrogenase if selenite was also present. In comparison, high concentrations of molybdate affected only a small decrease in activity level at the optimal concentration for selenite and relieved to some degree the inhibitory effect of 10-5 M selenite. With hypoxanthine and xanthine as substrates for growth again only the addition of selenite was necessary to show a similar increase in xanthine dehydrogenase activity.

C. acidiurici could be grown in a mineral medium. Both xanthine dehydrogenase and formate dehydrogenase exhibited the highest level of activity if selenite and tungstate were present in that medium.

In C. cylindrosporum the basal activity level of xanthine dehydrogenase was about 0.95 μmol/min x mg of protein. The addition of 10-7 M selenite to the growth medium increased the activity level about 3-fold, but the highest level (3.7 U/mg) was reached if 10-7 M molybdate was also added. The presence of tungstate resulted in a decreased enzyme activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreesen, J. R.: Role of selenium, molybdenum and tungsten in anaerobes. In: Anaerobiosis and anaerobic infection (Proceedings of the Symposia held at the XII. International Congress of Microbiology) (G. Gottschalk, N. Pfennig, H. Werner, eds.). Stuttgart: Gustav Fischer-Verlag 1979

    Google Scholar 

  • Barker, H. A., Beck, J. V.: The fermentative decomposition of purines by Clostridium acidi-urici and Clostridium cylindrosporum. J. Biol. Chem. 141, 3–27 (1941)

    Google Scholar 

  • Barker, H. A., Beck, J. V.: Clostridium acidi-urici and Clostridium cylindrosporum, organisms fermenting uric acid and some other purines. J. Bacteriol. 43, 291–304 (1942)

    Google Scholar 

  • Barker, H. A., Peterson, W. H.: The nutritional requirements of Clostridium acidi-urici. J. Bacteriol. 47, 307–308 (1944)

    Google Scholar 

  • Beisenherz, G., Bolze, H. J., Bücher, T., Czok, R., Garbade, H. K., Meyer-Arendt, E., Pfleiderer, G.: Diphosphofructose-Aldolase, Phosphoglyceraldehyde-Dehydrogenase, Milchsäure-Dehydrogenase, Glycerophosphat-Dehydrogenase und Pyruvat-Kinase aus Kaninchenmuskulatur in einem Arbeitsgang. Z. Naturforsch. 8b, 555–577 (1953)

    Google Scholar 

  • Bradshaw, W. H., Barker, H. A.: Purification and properties of xanthine dehydrogenase from Clostridium cylindrosporum. J. Biol. Chem. 235, 3620–3629 (1960)

    Google Scholar 

  • Bray, R. C.: Molybdenum iron-sulfur flavin hydroxylases and related enzymes. In: The Enzymes (3rd Ed.) (P. Boyer, ed.), Vol. 12, pp. 299–419. New York: Academic Press 1975

    Google Scholar 

  • Bryant, M. P.: Commentary on the Hungate technique for culture of anaerobic bacteria. Am. J. Clin. Nutr. 25, 1324–1328 (1972)

    Google Scholar 

  • Callis, G. E., Wentworth, R. A. D.: Tungsten versus molybdenum in models for biological systems. Bioinorg. Chem. 7, 57–70 (1977)

    Google Scholar 

  • Cone, J. E., Martin Delrio, R., Davis, J. N., Stadtman, T. C.: Chemical characterization of selenoprotein component of clostridial glycine reductase. Identification of selenocysteine as organoselenium moiety. Proc. Natl. Acad. Sci. 73, 2659–2663 (1976)

    Google Scholar 

  • Coughlan, M. P.: On the origin of the cyanolysable sulphur in molybdenum iron/sulfur flavin hydroxylases. FEBS Lett. 81, 1–6 (1977)

    Google Scholar 

  • Dilworth, G. L., Bandurski, R. S.: Activation of selenate by adenosine 5′-triphosphate sulphurylase from Saccharomyces cerevisiae. Biochem. J. 163, 521–529 (1977)

    Google Scholar 

  • Edmondson, D., Massey, V., Palmer, G., Beacham, L. M., Elion, G. B.: The resolution of active and inactive xanthine oxidase by affinity chromatography. J. Biol. Chem. 247, 1597–1604 (1972)

    Google Scholar 

  • Elliott, B. B., Mortenson, L. E.: Transport of molybdate by Clostridium pasteurianum. J. Bacteriol. 124, 1295–1301 (1975)

    Google Scholar 

  • Elliott, B. B., Mortenson, L. E.: Molybdenum storage component from Clostridium pasteurianum. In: Recent developments in nitrogen fixation (W. Newton, J. R. Postgate, C. Rodriguez-Barrueco, eds.), pp. 205–217. London: Academic Press 1977

    Google Scholar 

  • Enoch, H. G., Lester, R. L.: The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli. J. Biol. Chem. 250, 6693–6705 (1975)

    Google Scholar 

  • Forstrom, J. W., Zakowski, J. J., Tappel, A. L.: Identification of the catalytic site of rat liver glutathione peroxidase as selenocysteine. Biochemistry 17, 2639–2644 (1978)

    Google Scholar 

  • Ganther, H. E.: Reduction of the selenotrisulfide derivative of glutathione to a persulfide analog by glutathione reductase. Biochemistry 10, 4089–4098 (1971)

    Google Scholar 

  • Günther, W. H. H.: Methods in selenium chemistry. III. The reduction of diselenides with dithiothreitol. J. Org. Chem. 32, 3931–3933 (1967)

    Google Scholar 

  • Hochstein, L. I., Dalton, B. P.: The hydroxylation of nicotine: the origin of the hydroxyl oxygen. Biochem. Biophys. Res. Commun. 21, 644–648 (1965)

    Google Scholar 

  • Hunt, A. L., Hughes, D. E., Lowenstein, J. M.: The hydroxylation of nicotinic acid by Pseudomonas fluorescens. Biochem. J. 69, 170–173 (1958)

    Google Scholar 

  • Imhoff, D., Andreesen, J. R.: Nicotinic acid hydroxylase from Clostridium barkeri: selenium-dependent formation of active enzyme. FEMS Microbiol. Lett 5, 155–158 (1979)

    Google Scholar 

  • Krenitsky, T. A., Neil, S. M., Elion, G. B., Hitchings, G. H.: A comparison of the specificities of xanthine oxidase and aldehyde oxidase. Arch. Biochem. Biophys. 150, 585–599 (1972)

    Google Scholar 

  • Leonhardt, U., Andreesen, J. R.: Some properties of formate dehydrogenase, accumulation and incorporation of 185W-tungsten into proteins of Clostridium formicoaceticum. Arch. Microbiol. 115, 277–284 (1977)

    Google Scholar 

  • Ljungdahl, L. G.: Tungsten, a biologically active metal. Trends in biochem. Sci. 1, 63–65 (1976)

    Google Scholar 

  • Ljungdahl, L. G., Andreesen, J. R.: Tungsten, a component of active formate dehydrogenase of Clostridium thermoaceticum. FEBS Lett. 54, 279–282 (1975)

    Google Scholar 

  • Ljungdahl, L. G., Andreesen, J. R.: Reduction of CO2 to acetate in homoacetate fermenting clostridia and the involvement of tungsten in formate dehydrogenase. In: Symposium on microbial production and utilization of gases (H2, CH4, CO) (H. G. Schlegel, G. Gottschalk, N. Pfennig, eds.), pp. 163–172. Göttingen: Akademie der Wissenschaften/E. Goltze-Verlag 1976

    Google Scholar 

  • Ljungdahl, L. G., Andreesen, J. R.: Formate dehydrogenase, a selenium-tungsten enzyme from Chlostridium thermoaceticum. In: Methods in enzymology, Vol. 53 (S. P. Colowick, N. O. Kaplan, eds.), pp. 360–372. New York: Academic Press 1978

    Google Scholar 

  • Lyon, E. S., Garrett, R. H.: Regulation, purification, and properties of xanthine dehydrogenase in Neurospora crassa. J. Biol. Chem. 253, 2604–2614 (1978)

    Google Scholar 

  • Massey, V.: Iron-sulfur flavoprotein hydroxylases. In: Iron-sulfur proteins, Vol. I (W. Lovenberg, ed.), pp. 301–360. New York: Academic Press 1973

    Google Scholar 

  • McCready, R. G. L., Din, G. A.: Active sulfate transport in Saccharomyces cerevisiae. FEBS Lett. 38, 361–363 (1974)

    Google Scholar 

  • Olson, J. S., Ballou, D. P., Palmer, G., Massey, V.: The mechanism of action of xanthine oxidase. J. Biol. Chem. 249, 4363–4382 (1974)

    Google Scholar 

  • Rabinowitz, J. C.: Intermediates in purine breakdown. In: Methods in enzymology, Vol. 6 (S. P. Colowick, N. O. Kaplan, eds.), pp. 703–713. New York: Academic Press 1963

    Google Scholar 

  • Scherer, P. A., Thauer, R. K.: Purification and properties of reduced ferredoxin: CO2 oxidoreductase from Clostridium pasteurianum, a molybdenum iron-sulfur protein. Eur. J. Biochem. 85, 125–135 (1978)

    Google Scholar 

  • Smith, S. T., Rajagopalan, K. V., Handler, P.: Purification and properties of xanthine dehydrogenase from Micrococcus lactilyticus. J. Biol. Chem. 242, 4108–4117 (1967)

    Google Scholar 

  • Stadtman, T. C.: Selenium-dependent clostridial glycine reductase. In: Methods in enzymology, Vol. 53 (S. P. Colowick, N. O. Kaplan, eds.), pp. 373–382. New York: Academic Press 1978

    Google Scholar 

  • Thauer, R. K., Fuchs, G., Schnitker, U., Jungermann, K.: CO2 reductase from Clostridium pasteurianum: molybdenum dependence of synthesis and inactivation by cyanide. FEBS Lett. 38, 45–48 (1973)

    Google Scholar 

  • Thorneley, R. N. F.: A convenient electrochemical preparation of reduced methylviologen and a kinetic study of the reaction with oxygen using an anaerobic stopped-flow apparatus. Biochim. Biophys. Acta 333, 487–496 (1974)

    Google Scholar 

  • Tweedie, J. W., Segel, I. H.: Specificity of transport processes for sulphur, selenium, and molybdenum anions by filamentous fungi. Biochim. Biophys. Acta 196, 95–106 (1970)

    Google Scholar 

  • Vogels, G. D., van der Drift, C.: Degradation of purines and pyrimidines by microorganisms. Bacteriol. Rev. 40, 403–468 (1976)

    Google Scholar 

  • Wagner, R., Andreesen, J. R.: Differentiation between Clostridium acidiurici and Clostridium cylindrosporum on the basis of specific metal requirements for formate dehydrogenase formation. Arch. Microbiol. 114, 219–224 (1977)

    Google Scholar 

  • Whiteley, H. R.: The fermentation of purines by Micrococcus aerogenes. J. Bacteriol. 63, 163–175 (1952)

    Google Scholar 

  • Whiteley, H. R., Douglas, H. C.: The fermentation of purines by Micrococcus lactilyticus. J. Bacteriol. 61, 605–616 (1951)

    Google Scholar 

  • Woolfolk, C. A., Downard, J. S.: Distribution of xanthine oxidase and xanthine dehydrogenase specificity types among bacteria. J. Bacteriol. 130, 1175–1191 (1977)

    Google Scholar 

  • Woolfolk, C. A., Downard, J. S.: Bacterial xanthine oxidase from Arthrobacter S-2. J. Bacteriol. 135, 422–428 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, R., Andreesen, J.R. Selenium requirement for active xanthine dehydrogenase from Clostridium acidiurici and Clostridium cylindrosporum . Arch. Microbiol. 121, 255–260 (1979). https://doi.org/10.1007/BF00425064

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00425064

Key words

Navigation