Skip to main content
Log in

Comparative studies on physiology and taxonomy of obligately purinolytic clostridia

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Eleven strains of obligately purinolytic clostridia have been studied with respect to their assignment to the three type strains of Clostridium acidiurici, C. cylindrosporum, and C. purinolyticum. DNA/DNA-hybridization proved to be the method of choice for differentiation whereas phenotypic characteristics such as spore morphology, substrate spectra, nutritional requirements, product formation, and sensitivity against various antibiotics did not allow unequivocal identification. All strains depended on selenite for growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Auling G, Dittbrenner M, Maarzahl M, Nokhal T, Reh M (1980) Deoxyribonucleic acid relationships among hydrogen-oxidizing strains of the genera Pseudomonas, Alcaligenes, and Paracoccus. Int J Syst Bacteriol 30:123–128

    Google Scholar 

  • Barker HA, Beck JV (1941) The fermentative decomposition of purines by Clostridium acidi-urici and Clostridium cylindrosporum. J Biol Chem 141:3–27

    Google Scholar 

  • Barker HA, Beck JV (1942) Clostridium acidi-urici and Clostridium cylindrosporum, organisms fermenting uric acid and some other purines. J Bacteriol 43:291–304

    Google Scholar 

  • Beck J (1948) A microbiological method for the determination of adenine. J Biol Chem 176:1169–1175

    Google Scholar 

  • Beisenherz GH, Boltze HJ, Bücher T, Czok R, Garbade KH, Meyer-Arendt E, Pfleiderer G (1953) Diphosphofructose-Aldolase, Phosphoglyceraldehyd-Dehydrogenase, Milchsäure-Dehydrogenase, Glycerophosphat-Dehydrogenase and Pyruvat-Kinase aus Kaninchenmuskulatur in einem Arbeitsgang. Z Naturforsch Teil 8b:555–577

    Google Scholar 

  • Bradley SG (1980) DNA reassociation and base composition. In: Goodfellow M, Board RG (eds) Microbiological classification and identification. Soc Appl Bacteriol Symp Series 8. Academic Press, London, pp 11–26

    Google Scholar 

  • Bradshaw WH, Barker HA (1960) Purification and properties of xanthine dehydrogenase from Clostridium cylindrosporum. J Biol Chem 235:3620–3629

    Google Scholar 

  • Champion AB, Rabinowitz JC (1977) Ferredoxin and formyltetrahydrofolate synthetase: comparative studies with Clostridium acidiurici, Clostridium cylindrosporum, and newly isolated anaerobic uric acid-fermenting strains. J Bacteriol 132:1003–1020

    Google Scholar 

  • De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142

    Google Scholar 

  • Dorn M, Andreesen JR, Gottschalk G (1978) Fermentation of fumarate and L-malate by Clostridium formicoaceticum. J Bacteriol 133:26–32

    Google Scholar 

  • Dürre P, Andreesen JP (1982a) Separation and quantitation of purines and their anaerobic and aerobic degradation products by high-pressure liquid chromatography. Anal Biochem 123:32–40

    Google Scholar 

  • Dürre P, Andreesen JR (1982b) Anaerobic degradation of uric acid via pyrimidine derivatives by selenium-starved cells of Clostridium purinolyticum. Arch Microbiol 131:255–260

    Google Scholar 

  • Dürre P, Andreesen JR (1982c) Selenium-dependent growth and glycine fermentation by Clostridium purinolyticum. J Gen Microbiol 128:1457–1466

    Google Scholar 

  • Dürre P, Andreesen JR (1983) Purine and glycine metabolism by purinolytic clostridia. J Bacteriol 154:192–199

    Google Scholar 

  • Dürre P, Andersch W, Andreesen JR (1981) Isolation and characterization of an adenine-utilizing, anerobic sporeformer, Clostridium purinolyticum sp. nov. Int J Syst Bacteriol 31:184–194

    Google Scholar 

  • Emtsev VT, Babaitseva VA (1978) Occurrence of anaerobic bacteria of the genus Clostridium capable of transforming purine and pyrimidinc compounds in soil of the USSR. Izv Timiryazev SKH Akad 2:124–132

    Google Scholar 

  • Garvie EI (1979) A note on the preparation of deoxyribonucleic acid from Streptococcus bovis and variations in the melting temperature of different preparations. J Appl Bacteriol 46:553–555

    Google Scholar 

  • Isay O (1906) Eine Synthese des Purins. Ber Dt Chem Ges 39:250–265

    Google Scholar 

  • Johnson JL (1973) Use of nucleic-acid homologies in the taxonomy of anaerobic bacteria. Int J Syst Bacteriol 23:308–315

    Google Scholar 

  • Lang E, Lang H (1972) Spezifische Farbreaktion zum direkten Nachweis der Ameisensäure. Frescnius Z Anal Chem 260:8–10

    Google Scholar 

  • Liebert F (1909) The decomposition of uric acid by bacteria. Proc K Akad Ned Wet 12:54–64

    Google Scholar 

  • Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118

    Google Scholar 

  • Mitani T, Heinze JE, Freese E (1977) Induction of sporulation in Bacillus subtilis by decoyinine or hadacidin. Biochem Biophys Res Commun 77:1118–1125

    Google Scholar 

  • Newell PC, Tucker RG (1968) Biosynthesis of the pyrimidine moiety of thiamine. A new route of pyrimidine biosynthesis involving purine intermediates. Biochem J 106:279–287

    Google Scholar 

  • Rabinowitz JC, Barker HA (1956) Purine fermentation by Clostridium cylindrosporum. II. Purine transformations. J Biol Chem 218:161–173

    Google Scholar 

  • Rakosky J Jr, Beck JV (1955) Guanine degradation by Clostridium acidiurici. I. Evidence for the presence of guanase. J Bacteriol 69:563–565

    Google Scholar 

  • Sardesai VM, Provido HS (1970) The determination of glycine in biological fluids. Clin Chim Acta 29:67–71

    Google Scholar 

  • Schäfer R, Schwartz AC (1976) Catabolism of purines in Clostridium sticklandii. Zbl Bakt Hyg I. Abt Orig A 235:165–172

    Google Scholar 

  • Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420

    Google Scholar 

  • Smith LDS, Hobbs G (1974) Genus Clostridium Prazmowski 1880. In: Buchanan RE, Gibbons NE (eds) Bergey's manual of determinative bacteriology, 8th edn. Williams & Wilkins Co, Baltimore, pp 551–572

    Google Scholar 

  • Spahr R (1982) Anaerober Aminosäure- und Purinabbau durch einige Arten der Gattung Peptococcus. Diploma thesis, University of Göttingen

  • Stadtman TC (1980) Selenium-dependent enzymes. Ann Rev Biochem 49:93–110

    Google Scholar 

  • Tanner RS, Stackebrandt E, Fox GE, Gupta R, Magrum LJ, Woese CR (1982) A phylogenetic analysis of anaerobic eubacteria capable of synthesizing acetate from carbon dioxide. Curr Microbiol 7:127–132

    Google Scholar 

  • Tonomura B, Malkin R, Rabinowitz JC (1965) Deoxyribonucleic acid base composition of clostridial species. J Bacteriol 89:1438–1439

    Google Scholar 

  • Vogels GD, van der Drift C (1976) Degradation of purines and pyrimidines by microorganisms. Bacteriol Rev 40:403–468

    Google Scholar 

  • Vollbrecht D, El Nawawy MA, Schlegel HG (1978) Excretion of metabolites by hydrogen bacteria. I. Autotrophic and heterotrophic fermentations. Eur J Appl Microbiol 6:145–155

    Google Scholar 

  • Wagner R (1980) Untersuchungen zum Purinabbau durch Clostridium acidiurici and Clostridium cylindrosporum sowie zum Spurenelementbedürfnis der Xanthin-Dehydrogenase aus beiden Organismen. Ph D thesis, University of Göttingen

  • Wagner R, Andreesen JR (1977) Differentiation between Clostridium acidiurici and Clostridium cylindrosporum on the basis of specific metal requirements for formate dehydrogenase formation. Arch Microbiol 114:219–224

    Google Scholar 

  • Wagner R, Andreesen JR (1979) Selenium requirement for active xanthine dehydrogenase from Clostridium acidiurici and Clostridium cylindrosporum. Arch Microbiol 121:255–260

    Google Scholar 

  • Whiteley HR (1952) The fermentation of purines by Micrococcus aerogenes. J Bacteriol 63:163–175

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiefer-Ullrich, H., Wagner, R., Dürre, P. et al. Comparative studies on physiology and taxonomy of obligately purinolytic clostridia. Arch. Microbiol. 138, 345–353 (1984). https://doi.org/10.1007/BF00410902

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00410902

Key words

Navigation