Skip to main content
Log in

Acetyl-coenzyme A: arylamine N-acetyltransferases in microorganisms: screening and isolation of an enzyme from Bacillus cereus

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The raw extracts of a series of microorganisms were screened for the presence of acetyl-coenzyme A: arylamine N-acetyltransferase (AAAT) using a radioactive assay with 3H-acetyl-coenzyme A and aniline as substrates. Enzyme activities were primarily detected in the soluble fractions of Bacillus and Nocardia species, and in some further soil organisms. Only strains of Bacillus cereus were able to acetylate 4-nitroaniline and 3,5-dimethyl-4-nitroaniline. The fermentation conditions for the production of the enzyme were optimized. The AAAT from one strain of Bacillus cereus was purified 24-fold and characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AAAT:

acetyl-coenzyme A: arylamine N-acetyltransferase

AcP:

acetylphosphate

CoA:

coenzyme A

EDTA:

ethylenediaminetetra-acetic acid

PTA:

phosphotransacetylase

References

  • Andres HH (1982) Reinigung und Charakterisierung der Acetyl-Coenzym A: Arylamin N-Acetyltransferase aus Taubenleber und deren Verwendung zur Bestimmung von Enzymen, Substraten und Inhibitoren. Thesis, Technical University of Munich

  • Andres HH, Kolb HJ, Weiss L (1983a) Purification and physicalchemical properties of acetyl-CoA: arylamine N-acetyltransferase from pigeon liver. Biochim Biophys Acta 746:182–192

    Google Scholar 

  • Andres HH, Kolb HJ, Schreiber RJ, Weiss L (1983b) Characterization of the active site, substrate specificity and kinetic properties of acetyl-CoA: arylamine N-acetyltransferase from pigeon liver. Biochim Biophys Acta 746:193–201

    Google Scholar 

  • Bachofer R, Lingens F, Schäfer W (1975) Conversion of aniline into pyrocatechol by a Nocardia sp.; incorporation of oxygen-18. FEBS Lett 50:288–290

    Google Scholar 

  • Bamberger E (1925) Studien über Arylazide. 5. Mitteilung. Liebig's Ann Chem 443:207

    Google Scholar 

  • Barenholz Y, Gatt S (1972) Long chain base-acetyl coenzyme A acetyltransferase from the microsomes of Hansenula ciferri. I. Isolation and properties. J Biol Chem 247:6827–6833

    Google Scholar 

  • Barenholz Y, Edelman I, Gatt S (1974) Amine: acetyl coenzyme A acetyltransferase from the soluble fraction of Hansenula ciferri: Isolation and properties. Biochim Biophys Acta 358:262–274

    Google Scholar 

  • Cartwright NJ, Cain RB (1959) Bacterial degradation of the nitrobenzoic acids. 2. Reduction of the nitro group. Biochem J 73:305–314

    Google Scholar 

  • Davies J, Smith DI (1978) Plasmid determined resistance to antimicrobial agents. Annu Rev Microbiol 32:469–518

    Google Scholar 

  • Engelhardt G, Wallnöfer P, Fuchsbichler G, Baumeister W (1977) Bacterial transformations of 4-chloroaniline. Chemosphere 2/3: 85–92

    Google Scholar 

  • Glowinski IB, Weber WW (1982) Genetic regulation of aromatic amine N-acetylation in inbred mice. J Biol Chem 257:1424–1430

    Google Scholar 

  • Gollamudi R, Rackley RJ, Autian J (1983) A new substrate for the measurement of N-acetyltransferase activity. Enzyme 30:155–161

    Google Scholar 

  • Katz J, Liebermann I, Barker HA (1953) Acetylation of amino acids by enzymes of Clostridium kluyveri. J Biol Chem 200:417–429

    Google Scholar 

  • Kaufman DD, Plimmer JR, Klingebiel UI (1973) Microbial oxidation of 4-chloroaniline. J Agric Food Chem 21:127–132

    Google Scholar 

  • Münzner R, Mutschler E, Rummel M (1967) Über die mikrobiologische Umwandlung N-haltiger Substrate. 1. Mitteilung: Über die mikrobiologische Acetylierung von Aminen durch Cordyceps militaris. Planta Med 15:97–103

    Google Scholar 

  • Paul RC, Ratledge C (1971) N-acetylanthranilic acid biosynthesis in Aerobacter aerogenes and Escherichia coli. Biochim Biophys Acta 230:451–461

    Google Scholar 

  • Rummel M (1967) Über mikrobiologische Umwandlung stick-stoffhaltiger organischer Verbindungen. Thesis, Johannes Gutenberg University, Mainz

    Google Scholar 

  • Shaw WV (1975) Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. In: Hash JH (ed). Methods Enzymol 43:737–755

  • Tabor H, Mehler AH, Stadtman ER (1953) The enzymatic acetylation of amines. J Biol Chem 204:127–138

    Google Scholar 

  • Tacker M, McIsaac WM, Creaven PJ (1970) Metabolism of tyramine-1-14C by the rat. Biochem Pharmacol 19:2763–2773

    Google Scholar 

  • Wallnöfer P, Engelhardt G, Fuchsbichler G (1976) Das Verhalten von Anilinderivaten als Abbauprodukte chemischer Pflanzenschutzmittel im Boden. Bayer Landwirtsch Jahrb 53:309–317

    Google Scholar 

  • Wallnöfer PR, Ziegler W, Engelhardt G, Rothmeier H (1978) Tranformation of dinitrophenol-herbicides by Azotobacter sp. Chemosphere 12:967–972

    Google Scholar 

  • Weber WW, Cohen SN, Steinberg MS (1968) Purification and properties of N-acetyltransferase from mammalian liver. Ann NY Acad Sci 157:734–741

    Google Scholar 

  • You IS, Bartha R (1982) Metabolism of 3,4-dichloroaniline by Pseudomonas putida. J Agric Food Chem 30:274–277

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasmann, M.J., Seidl, P.H., Engelhardt, G. et al. Acetyl-coenzyme A: arylamine N-acetyltransferases in microorganisms: screening and isolation of an enzyme from Bacillus cereus . Arch. Microbiol. 146, 275–279 (1986). https://doi.org/10.1007/BF00403229

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00403229

Key words

Navigation