Skip to main content
Log in

Accumulation and incorporation of 185W-tungsten into proteins of Clostridium acidiurici and Clostridium cylindrosporum

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Uptake of tungstate by growing cells was unaffected by the presence of molybdate in Clostridium cylindrosporum, whereas in C. acidiurici the accumulation was decreased by molybdate at 10-6 mol/l tungstate and higher concentrations. The labelling pattern of soluble proteins by 185W-tungsten indicated after gel chromatography the presence of three different tungstoproteins in both bacteria. Formate dehydrogenase activity always eluted at a maximum of tungsten labelling. The incorporation of tungsten into formate dehydrogenase containing fractions and a possible tungsten-binding-storage protein was independent of the presence of excess molydate pointing to a genuine role for tungstate in these bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams MWW, Mortenson LE (1985) Mo reductases: Nitrate reductase and formate dehydrogenase. In: Spiro TG (ed) Molybdenum enzymes. John Wiley & Sons. New York, pp 519–593

    Google Scholar 

  • Amy NK, Rajagopalan KV (1979) Characterization of molybdenum cofactor from Escherichia coli. J Bacteriol 140:114–124

    Google Scholar 

  • Andreesen JR, Schaupp A, Neurauter C, Brown A, Ljungdahl LG (1973) Fermentation of glucose, fructose and xylose by Clostridium thermoaceticum. Effects of metals on growth yield, enzymes and the synthesis of acetate from CO2. J Bacteriol 114:743–751

    Google Scholar 

  • Andreesen JR, El Ghazzawi E, Gottschalk G (1974) The effects of ferrous ions, tungstate and selenite on the level of formate dehydrogenase in Clostridium formicoaceticum and formate synthesis from CO2 during pyruvate fermentation. Arch Microbiol 96:103–118

    Google Scholar 

  • Andreesen JR, Zindel U, Dürre P (1985) Clostridium cylindrosporum (ex Barker and Beck 1942) nom rev. Int J Syst Bacteriol 35:206–208

    Google Scholar 

  • Bortels H (1936) Weitere Untersuchungen über die Bedeutung von Molybdän, Vanadium, Wolfram und anderen Erdaschenstoffen für stickstoffbindende und andere Mikroorganismen. Zbl Bakt II Abt 95:193–218

    Google Scholar 

  • Bowen HJM (1966) Trace elements in biochemistry. Academic Press, London, New York

    Google Scholar 

  • Braun M (1981) Charakterisierung von anaeroben autotrophen Essigsäurebildnern und Untersuchungen zur Essigsäurebildung aus Wasserstoff und Kohlendioxid durch Clostridium aceticum. Ph D thesis, Universität Göttingen

  • Brown TA, Shrift A (1982) Selective assimilation of selenite by Escherichia coli. Can J Microbiol 28:307–310

    Google Scholar 

  • Bruggen JJA van, Zwart KB, Hermans JGF, van Hove EM, Stumm CK, Vogels GD (1986) Isolation and characterization of Methanoplanus endosymbiosus sp. nov., and endosymbiont of the marine sapropelic ciliate Metopus contortus Quennerstedt. Arch Microbiol 144:367–374

    Google Scholar 

  • Cardin CJ, Mason J (1975) Sulphate transport by rat ileum. Effect of molybdate and other anions. Biochim Biophys Acta 394:46–54

    Google Scholar 

  • De Renzo EC, Kaleita E, Heytler PG, Oleson JJ, Hutchings BL, Williams JH (1953) Identification of the xanthine oxidase factor as molybdenum. Arch Biochem Biophys 45:247–253

    Google Scholar 

  • Elliott BB, Mortenson LE (1975) Transport of molybdate by Clostridium pasteurianum. J Bacteriol 124:1295–1301

    Google Scholar 

  • Elliott BB, Mortenson LE (1976) Regulation of molybdate transport by Clostridium pasteurianum. J Bacteriol 127:770–779

    Google Scholar 

  • Elliott BB, Mortenson LE (1977) Molybdenum storage component from Clostridium pasteurianum. In: Newton W, Postgate JR, Rodriguez-Barrueco (eds) Recent developments in nitrogen fixation. Academic Press, London, pp 205–217

    Google Scholar 

  • Harrison GI, Laishley EJ, Krouse HR (1980) Stable isotope fractionation by Clostridium pasteurianum. 3. Effect of SeO 2-3 on the physiology and associated sulfur isotope fractionation during SO 2-3 and SO 2-4 reductions. Can J Microbiol 26:952–958

    Google Scholar 

  • Hinton SM, Mortenson LE (1985a) Identification of molybdoproteins in Clostridium pasteurianum. J Bacteriol 162:477–484

    Google Scholar 

  • Hinton SM, Mortenson LE (1985b) Regulation and order of involvement of molybdoproteins during synthesis of molybdoenzymes in Clostridium pasteurianum. J Bacteriol 162:485–493

    Google Scholar 

  • Jones JB, Stadtman TC (1977) Methanococcus vannielii: culture and effects of selenium and tungsten on growth. J Bacteriol 130:1404–1406

    Google Scholar 

  • Jones JB, Stadtman TC (1981) Selenium-dependent and selenium-independent formate dehydrogenase of Methanococcus vannielii. Separation of the two forms and characterization of the purified selenium-independent form. J Biol Chem 256: 656–663

    Google Scholar 

  • Krüger B, Meyer O (1986) The pterin (bactopterin) of carbon monoxide dehydrogenase from Pseudomonas carboxydoflava. Eur J Biochem 157:121–128

    Google Scholar 

  • Leonhardt U, Andreesen JR (1977) Some properties of formate dehydrogenase, accumulation and incorporation of 185W-tungsten into proteins of Clostridium formicoaceticum. Arch Microbiol 115:277–284

    Google Scholar 

  • Ljungdahl LG (1976) Tungsten, a biologically active metal. TIBS 1:63–65

    Google Scholar 

  • Ljungdahl LG, Andreesen JR (1975) Tungsten, a component of active formate dehydrogenase of Clostridium thermoaceticum. FEBS Lett 54:279–282

    Google Scholar 

  • Ljungdahl LG, Andreesen JR (1976) Reduction of CO2 to acetate in homoacetate fermenting clostridia and the involvement of tungsten in formate dehydrogenase. In: Schlegel HG, Gottschalk G, Pfennig N (eds) Symposium on microbial production and utilization of gases (H2, CH4, CO) Akademie der Wissenschaften/E Goltze Verlag, Göttingen, pp 163–172

    Google Scholar 

  • Menzel, U, Gottschalk G (1985) The internal pH of Acetobacterium wieringae and Acetobacter aceti during growth and production of acetic acid. Arch Microbiol 143:47–51

    Google Scholar 

  • Pienkos PT, Brill WJ (1981) Molybdenum accumulation and storage in Klebsiella pneumoniae and Azotobacter vinelandii. J Bacteriol 145:743–751

    Google Scholar 

  • Pienkos PT, Shah VK, Brill WJ (1977) Molybdenum cofactors from molybdoenzymes and in vitro reconstitution of nitrogenase and nitrate reductase. Proc Natl Acad Sci 74:5468–5471

    Google Scholar 

  • Pinsent J (1954) The need of selenite and molybdate in the formation of formic dehydrogenase by members of the coli-aerogenes group of bacteria. Biochem J 57:10–16

    Google Scholar 

  • Schiefer-Ullrich H, Wagner R, Dürre P, Andreesen JR (1984) Comparative studies on physiology and taxonomy of obligately purinolytic clostridia. Arch Microbiol 138:345–353

    Google Scholar 

  • Smith RL, Klug MJ (1981) Electron donors utilized by sulfatereducing bacteria in eutrophic lake sediments. Appl Environ Microbiol 42:116–121

    Google Scholar 

  • Sørensen J, Christensen D, Jørgensen BB (1981) Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment. Appl Environ Microbiol 42:5–11

    Google Scholar 

  • Taya M, Hinoki H, Kobayashi T (1985) Tungsten requirement of an extremely thermophilic cellulolytic anaerobe (strain NA 10). Agric Biol Chem 49:2513–2515

    Google Scholar 

  • Taylor BF, Oremland RS (1979) Depletion of adenosine triphosphate in Desulfovibrio by oxyanions of group VI elements. Curr Microbiol 3:101–103

    Google Scholar 

  • Tziaka C (1984) Anaerober Benzoatabbau durch Desulfococcus multivorans und Desulfosarcina variabilis. Diplomarbeit, Universität Göttingen

  • Wagner R, Andreesen JR (1977) Differentiation between Clostridium acidiurici and Clostridium cylindrosporum on the basis of specific metal requirements for formate dehydrogenase formation. Arch Microbiol 114:219–224

    Google Scholar 

  • Wagner R, Andreesen JR (1979) Selenium requirement for active xanthine dehydrogenase from Clostridium acidiurici and Clostridium cylindrosporum. Arch Microbiol 121:255–260

    Google Scholar 

  • Wagner R, Cammack R, Andreesen JR (1984) Purification and characterization of xanthine dehydrogenase from Clostridium acidiurici grown in the presence of selenium. Biochim Biophys Acta 791:63–74

    Google Scholar 

  • Widdel F (1986) Growth of methanogenic bacteria in pure culture with 2-propanol and other alcohols as hydrogen donor. Appl Environ Microbiol 51:1056–1062

    Google Scholar 

  • Wilson LG, Bandurski RS (1958) Enzymatic reactions involving sulfate, sulfite, selenate and molybdate. J Biol Chem 233:975–981

    Google Scholar 

  • Winter J, Lerp C, Zabel HP, Wildenauer FX, König, H, Schindler F (1984) Methanobacterium wolfei, sp. nov., the first tungsten requiring thermophilic, autotrophic methanogen. Syst Appl Microbviol 5:457–466

    Google Scholar 

  • Yamato I, Saiki T,m Liu SM, Ljungdahl LG (1983) purification and properties of NADP-dependent formate dehydrogenease from Clostridium theromoaceticum, a tungsten-dselenium-rion requiring thermophilic, autotrophic methanogen. Syst Appl Microbiol 5:457–466

    Google Scholar 

  • Yamamoto I, Saiki T, Liu SM, Ljungdahl LG (1983) Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein. J Biol Chem 258:1826–1832

    Google Scholar 

  • Zabel HP, König H, Winter J (1984) Isolation and characterization of a new coccoid methanogen, Methanogenium tatii spec. nov. from a solfataric field on Mount Tatio. Arch Microbiol 137:308–315

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, R., Andreesen, J.R. Accumulation and incorporation of 185W-tungsten into proteins of Clostridium acidiurici and Clostridium cylindrosporum . Arch. Microbiol. 147, 295–299 (1987). https://doi.org/10.1007/BF00463491

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00463491

Key words

Navigation