Skip to main content
Log in

Ethanol dissimilation in Desulfovibrio

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

During growth of ethanol plus sulfate Desulfovibrio gigas and three other Desulfovibrio strains tested contained high NAD-dependent alcohol dehydrogenase activities and dye-linked aldehyde dehydrogenase activities. In lactate-grown cells these activities were lower or absent. In D. gigas an NADH dehydrogenase activity was found which was higher during growth on ethanol than during growth on lactate. The NADH dehydrogenase activity appeared to consist of at least three different soluble enzymes. The aldehyde dehydrogenase activity in D. gigas was highest with benzylviologen as an acceptor and was strongly stimulated by potassium ions. Coenzyme A or phosphate dependency could not be shown, indicating that acetyl-CoA or acetyl phosphate are not intermediates in the conversion of acetaldehyde to acetate.

In the absence of sulfate D. gigas was able to convert ethanol to acetate by means of interspecies hydrogen transfer to a methanogen. This conversion, however, did not lead to growth of the Desulfovibrio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DH:

dehydrogenase

BV2+/BV+ :

oxidized/reduced benzylviologen

DCPIP:

2,6-dichlorophenolindophenol

MTT:

3-(4′,5′-dimethylthiazol-2-yl)-2,4-diphenyltetrazolium bromide

MV2+/MV+ :

oxidized/reduced methylviologen

PMS:

phenazine methosulfate

References

  • Adachi O, Matsushita, K, Shinagawa E, Ameyama M (1980a) Crystallization and properties of NADP-dependent aldehyde dehydrogenase from Gluconobacter melanogenus. Agric Biol Chem 44:155–164

    Google Scholar 

  • Adachi O, Tayama K, Shinagawa E, Matsushita K, Ameyama M (1980b) Purification and characterization of membrane-bound aldehyde dehydrogenase from Gluconobacter suboxidans. Agric Biol Chem 44:503–515

    Google Scholar 

  • Ameyama M, Osada K, Shinagawa E, Matsushita K, Adachi O (1981) Purification and characterization of aldehyde dehydrogenase of Acetobacter aceti. Agric Biol Chem 45:1889–1890

    Google Scholar 

  • Attwood MM, Harder W (1974) The oxidation and assimilation of C2 compounds by Hyphomicrobium sp. J Gen Microbiol 84:350–356

    Google Scholar 

  • Bellion E, Wu GTS (1978) Alcohol dehydrogenase from a facultative methylotrophic bacterium. J Bacteriol 135:251–258

    PubMed  Google Scholar 

  • Bryant MP, Wolin EA, Wolin MJ, Wolfe RS (1967) Methanobacillus omelianskii a symbiotic association of two species of bacteria. Arch Mikrobiol 59:20–31

    Google Scholar 

  • Bryant MP, Campbell LL, Reddy CA, Crabill MR (1977) Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Environ Microbiol 33:1162–1169

    Google Scholar 

  • Duine JA, Frank Jzn J, Jongejan JA (1986) PQQ and quinoprotein enzymes in microbial oxidations. FEMS Microbiol Rev 32:165–178

    Google Scholar 

  • Goa J (1953) A microbiuret method for protein determination; determination of total protein in the cerebrospinal fluid. Scand J Clin Lab Invest 5:218–222

    PubMed  Google Scholar 

  • Groeneveld A, Dijkstra M, Duine JA (1984) Cyclopropanol in the exploration of bacterial alcohol oxidation. FEMS Microbiol Lett 25:311–314

    Google Scholar 

  • Howard BH, Hungate RE (1976) Desulfovibrio of the sheep rumen. Appl Environ Microbiol 32:598–602

    PubMed  Google Scholar 

  • Jakoby WB (1963) Aldehyde dehydrogenases. In: Boyer PD, Lardy H, Myrbäck K (eds) The enzymes. Academic Press, New York, pp 203–221

    Google Scholar 

  • Jendrossek D, Steinbüchel A, Schlegel HG (1987) Three different proteins exhibiting NAD-depenent acetaldehyde dehydrogenase activity from Alcaligenes eutrophus. Eur J Biochem 167:541–548 (1987)

    PubMed  Google Scholar 

  • Kremer DR, Hansen TA (1987) Glycerol and dihydroxyacetone dissimilation in Desulfovibrio strains. Arch Microbiol 147:249–256

    Google Scholar 

  • Laanbroek HJ, Abee T, Voogd IL (1982) Alcohol conversions by Desulfobulbus propionicus Lindhorst in the presence and absence of sulfate and hydrogen. Arch Microbiol 133:178–184

    Google Scholar 

  • LeGall J (1968) Purification partielle et étude de la NAD: rubrédoxin oxydo-réductase de D. gigas. Ann Inst Pasteur 114:109–115

    Google Scholar 

  • LeGall J, Fauque G (1988) Dissimilatory reduction of sulfur compounds. In: Zehnder AJB (ed) Biology of anaerobic microorganisms, chapter 11. John Wiley and Sons, New York London (in press)

    Google Scholar 

  • Moura JJG, Xavier AV, Bruschi M, LeGall J, Hall DO, Cammack R (1976) A molybdenum-containing iron-sulfur protein from D. gigas. Biochem Biophys Res Commun 72:782–789

    PubMed  Google Scholar 

  • Nanninga HJ, Gottschal JC (1986) Isolation of a sulfate-reducing bacterium growing with methanol. FEMS Microbiol Ecol 38:125–130

    Google Scholar 

  • Nanninga HJ, Gottschal JC (1987) Properties of Desulfovibrio carbinolicus sp. nov. and other sulfate-reducing bacteria isolated from an anaerobic-purification plant. Appl Environ Microbiol 53:802–809

    Google Scholar 

  • Odom JM, Peck HD (1981) Localization of dehydrogenases, reductases and electron transfer components in the sulfate-reducing bacterium Desulfovibrio gigas. J Bacteriol 147:161–169

    PubMed  Google Scholar 

  • Oser BL (1965) Determination of pyruvic acid. In: Oser BL (ed) Hawk's physiological chemistry. McGraw-Hill Book Company, New York Toronto Sydney London, pp 1107–1108

    Google Scholar 

  • Peck HD, Lissolo T (1988) Assimilatory and dissimilatory sulphate reduction: enzymology and bioenergetics. In: Cole JA, Ferguson SJ (eds) The nitrogen and sulphur cycles. Cambridge University Press, Cambridge

    Google Scholar 

  • Poels PA, Groen BW, Duine JA (1987) NAD(P)+-independent aldehyde dehydrogenase from Pseudomonas testosteroni A novel type of molybdenum-containing hydroxylase. Eur J Biochem 166:575–579

    PubMed  Google Scholar 

  • Postgate JR (1984) The sulphate-reducing bacteria. Cambridge University Press, Cambridge

    Google Scholar 

  • Reddy CA, Bryant MP, Wolin MJ (1972) Ferredoxin-dependent conversion of acetaldehyde to acetate and H2 in extracts of S organism. J Bacteriol 110:133–138

    PubMed  Google Scholar 

  • Schink B (1985) Fermentation of acetylene by an obligate anaerobe, Pelobacter propionicus sp. nov. Arch Microbiol 142:295–301

    Google Scholar 

  • Schink B, Kremer DR, Hansen TA (1987) Pathway of propionate formation from ethanol in Pelobacter propionicus. Arch Microbiol 147:321–327

    Google Scholar 

  • Smith LT, Kaplan NO (1980) Purification, properties, and kinetic mechanism of coenzyme A-linked aldehyde dehydrogenase from Clostridium kluyveri. Arch Biochem Biophys 203:663–675

    PubMed  Google Scholar 

  • Stams AJM, Hansen TA (1986) Metabolism of l-alanine in Desulfotomaculum ruminis and two marine Desulfovibrio strains. Arch Microbiol 145:277–279

    Google Scholar 

  • Stams AJM, Kremer DR, Nicolay K, Weenk GH, Hansen TA (1984) Pathway of propionate formation in Desulfobulbus propionicus. Arch Microbiol 139:167–173

    Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    PubMed  Google Scholar 

  • Trüper HG, Schlegel HG (1964) Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements of growing cells of Chromatium okenii. Antonie van Leeuwenhoek J Microbiol Serol 30:225–238

    Google Scholar 

  • Turner N, Barata B, Bray RC, Deistung J, LeGall J, Moura JJG (1987) The molybdenum iron-sulphur protein from Desulfovibrio gigas as a form of aldehyde oxidase. Biochem J 243:755–761

    PubMed  Google Scholar 

  • Widdel F (1988) Microbiology and ecology of sulfate and sulfur-reducing bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms, chapter 10, John Wiley and Sons, New York London (in press)

    Google Scholar 

  • Williamson DH (1974) L-alanine. Determination with alanine dehydrogenase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie, Weinheim, pp 1679–1682

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kremer, D.R., Nienhuis-Kuiper, H.E. & Hansen, T.A. Ethanol dissimilation in Desulfovibrio . Arch. Microbiol. 150, 552–557 (1988). https://doi.org/10.1007/BF00408248

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00408248

Key words

Navigation