Skip to main content
Log in

Degradation of diphenylether by Pseudomonas cepacia

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The microbial degradation of hard coal implies the cleavage of diaryl ether linkages in the coal macromolecule. We investigated the biodegradation of diphenylether as a model compound representing this substructure of coal. A bacterial strain isolated from soil and identified as Pseudomonas cepacia, was able to grow with diphenylether as sole source of carbon. During microbial growth, three metabolites were detected in the culture supernatant by high pressure liquid chromatography. As product of ring hydroxylation and subsequent rearomatization, 2,3-dihydroxydiphenylether was identified by UV, mass and nuclear magnetic resonance spectrometry and gas chromatography analyses. The cleavage of the ether linkage led to the formation of phenol and 2-pyrone-6-carboxylic acid, the latter being not further degraded by Pseudomonas cepacia. The possible cleavage mechanism of the ether linkage is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DPE:

diphenylether

PCA:

2-pyrone-6-carboxylic acid

GC:

gas chromatography

MS:

mass spectrometry

HPLC:

high pressure liquid chromatography

References

  • Bernhardt FH, Ruf HH, Staudinger H, Ullrich V (1971) Purification of a 4-methylbenzoate O-demethylase from Pseudomonas putida. Hoppe-Seyler's Z Physiol Chem 352:1091–1099

    Google Scholar 

  • Black TH (1983) The preparation and reactions of diazomethane. Aldrichimica Acta 16:3–10

    Google Scholar 

  • Cartwright NJ, Smith AW (1967) Bacterial attack on phenolic ethers. Biochem J 102:826–841

    Google Scholar 

  • Codner RC (1969) Solid and solidified growth media in microbiology. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 1. Academic Press, New York London, pp 427–454

    Google Scholar 

  • Cohen MS, Gabriele PD (1982) Degradation of coal by the fungi Polyporus versicolor and Poria placenta. Appl Environ Microbiol 44:23–27

    Google Scholar 

  • Cohen MS, Bowers WC, Aronson H, Gray Jr ET (1987) Cell-free solubilization of coal by Polyporus versicolor. Appl Environ Microbiol 53:2840–2843

    Google Scholar 

  • Donnelly MI, Dagley S (1980) Production of methanol from aromatic acids by Pseudomonas putida. J Bacteriol 142: 916–924

    Google Scholar 

  • Donnelly MI, Dagley S (1981) Bacterial degradation of 3,4,5-trimethoxycinnamic acid with production of methanol. J Bacteriol 147:471–476

    Google Scholar 

  • Eaton WE, Ribbons DW (1982) Metabolism of dibutylphthalate and phthalate by Micrococcus sp. strain 12B. J Bacteriol 151:48–57

    Google Scholar 

  • Eaton WE, Ribbons DW (1987) Biotransformation of 3-methylphthalate by Micrococcus sp. strain 12B. J Gen Microbiol 133:2473–2476

    Google Scholar 

  • Fakoussa RM (1981) Kohle als Substrat für Mikroorganismen: Untersuchungen zur mikrobiellen Umsetzung nativer Steinkohle. Ph. D. Thesis. Friedrich-Wilhelms-Universität Bonn, FRG

    Google Scholar 

  • Gamar Y, Gaunt JK (1971) Bacterial metabolism of 4-chloro-2-methylphenoxyacetate. Biochem J 122:527–531

    Google Scholar 

  • Heitkamp MA, Freeman JP, Miller DW, Cerniglia CE (1988) Pyrene degradation by a Mycobacterium sp.: Identification of ring oxidation and ring fission products. Appl Environ Microbiol 54:2556–2565

    Google Scholar 

  • Heredy LA, Wender I (1980) Model structure for a bituminous coal. Am Chem Soc, Div Fuel Chem 25:38–45

    Google Scholar 

  • Kersten PJ, Dagley S, Whittaker JW, Arciero DM, Lipscomb JD (1982) 2-Pyrone-4,6-dicarboxylic acid, a catabolite of gallic acids in Pseudomonas species. J Bacteriol 152:1154–1162

    Google Scholar 

  • Klein J, Beyer M, van Afferden M, Hodek W, Pfeifer F, Seewald H, Wolff-Fischer E, Jüntgen H (1988) Coal in biotechnology. In: Rehm H-J, Reed G (eds) Biotechnology, vol 6 b. Verlag Chemie, Weinheim, pp 497–567

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AG, Randall RJ (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Luckenbach R (1987) Beilstein: Handbook of organic chemistry. 5th Suppl Ser, vol 8. Springer Berlin Heidelberg New York

    Google Scholar 

  • Müller R, Lingens F (1980) Enzymatische Bildung und Isolierung von 2-Hydroxymuconsäure, ein Metabolit im bakteriellen Abbau des Herbizids Chloridazon. Z Naturf 35c:346–347

    Google Scholar 

  • Müller R, Haug S, Eberspächer J, Lingens F (1977) Catechol-2,3-Dioxygenase aus Pyrazon-abbauenden Bakterien. Hoppe Seyler's Z Physiol Chem 358:797–805

    Google Scholar 

  • Pfennig N, Lippert KD (1966) Über das Vitamin-B12-Bedürfnis phototropher Schwefelbakterien. Arch Mikrobiol 55: 245–256

    Google Scholar 

  • Pieper HP, Reineke W, Engesser KH, Knackmuss HJ (1988) Metabolism of 2,4-dichlorophenoxyacetic acid, 4-chloro-2-methylphenoxyacetic acid and 2-methylphenoxyacetic acid by Alcaligenes eutrophus JMP 134. Arch Microbiol 150: 95–102

    Google Scholar 

  • Pyne JW, Stewart DL, Fredrickson J, Wilson BW (1987) Solubilization of leonardite by an extracellular fraction from Coridus versicolor. Appl Environ Microbiol 53:2844–2848

    Google Scholar 

  • Ribbons DW (1970) Stoichiometry of 3-O-demethylase activity in Pseudomonas aeruginosa. FEBS Lett 8:101–104

    Google Scholar 

  • Saeki YS, Nozaki M (1980) Cleavage of pyrogallol by non-heme iron-containing dioxygenases. J Biol Chem 255:8465–8471

    Google Scholar 

  • Scott CD, Strandberg GW, Lewis SN (1986) Microbial degradation of coal. Biotechnol Prog 2:131–139

    Google Scholar 

  • Strandberg GW, Lewis SN (1987) Solubilization of coal by an extracellular product from Streptomyces setonii 75 Vi2. J Ind Microbiol 1:317–375

    Google Scholar 

  • Tack BF, Chapman PJ, Dagley S (1972) Metabolism of gallic acid and syringic acid by Pseudomonas putida. J Biol Chem 247: 6438–6443

    Google Scholar 

  • Takase I, Omori T, Mindoda Y (1986) Microbial degradation products from biphenyl-related compounds. Agric Biol Chem 50:681–686

    Google Scholar 

  • Ward B (1985) Lignite-degrading fungi isolated from a weathered outcrop. Syst Appl Microbiol 6:236–238

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfeifer, F., Schacht, S., Klein, J. et al. Degradation of diphenylether by Pseudomonas cepacia . Arch. Microbiol. 152, 515–519 (1989). https://doi.org/10.1007/BF00425479

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00425479

Key words

Navigation