Skip to main content
Log in

Oxidative phosphorylation in Zymomonas mobilis

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The obligately fermentative aerotolerant bacterium Zymomonas mobilis was shown to possess oxidative phosphorylation activity. Increased intracellular ATP levels were observed in aerated starved cell suspension in the presence of ethanol or acetaldehyde. Ethanolconsuming Z. mobilis generated a transmembrane pH gradient. ATP synthesis in starved Z. mobilis cells could be induced by external medium acidification of 3.5–4.0 pH units. Membrane vesicles of Z. mobilis coupled ATP synthesis to NADH oxidation. ATP synthesis was sensitive to the protonophoric uncoupler CCCP both in starved cells and in membrane vesicles. The H+-ATPase inhibitor DCCD was shown to inhibit the NADH-coupled ATP synthesis in membrane vesicles. The physiological role of oxidative phosphorylation in this obligately fermentative bacterium is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DCCD:

N,N′-dicyclohexylcarbodiimide

CCCP:

carbonyl cyanide m-chlorophenylhydrazone

References

  • Anderson RF, Patel KB, Evans MD (1985) Changes in the survival curve shape of E. coli cells following irradiation in the presence of uncouplers of oxidative phosphorylation. Int J Radiat Biol 48: 495–504

    Google Scholar 

  • Barrow KD, Collins JG, Norton RS, Rogers PL, Smith GM (1984) 31P nuclear magnetic resonance studies of the fermentation of glucose to ethanol by Zymomonas mobilis. J Biol Chem 259: 5711–5716

    Google Scholar 

  • Barthel T, Jonas R, Sahm H (1989) NADP+-dependent acetaldehyde dehydrogenase from Zymomonas mobilis. Isolation and partial characterization. Arch Microbiol 153: 95–100

    Google Scholar 

  • Belaich JP, Senez JC (1965) Influence of aeration and pantothenate on growth yields of Zymomonas mobilis. J Bacteriol 89: 1195–1200

    Google Scholar 

  • Bergmeyer HU, Graßl M, Walter HE (1983a) Acetate kinase. In: Bergmeyer HU, Bergmeyer J, Graßl M (eds) Methods of enzymatic analysis, vol 2, 3rd edn. Verlag Chemie, Weinheim, pp 127–128

    Google Scholar 

  • Bergmeyer HU, Graßl M, Walter HE (1983b) Phosphotransacetylase. In: Bergmeyer HU, Bergmeyer J, Graßl M (eds) methods of enzymatic analysis, vol 2, 3rd edn. Verlag Chemie, Weinheim, pp 295–296

    Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Anal Biochem 72: 248–254

    Google Scholar 

  • Bringer S, Finn RK, Sahm H (1984) Effect of oxygen on the metabolism of Zymomonas mobilis. Arch Microbiol 139: 376–381

    Google Scholar 

  • Bringer S, Härtner T, Poralla K, Sahm H (1985) Influence of ethanol on the hopanoid content and the fatty acid pattern in batch and continuous cultures of Zymomonas mobilis. Arch Microbiol 140: 312–316

    Google Scholar 

  • Dawes EA, Large PJ (1970) Effect of starvation on the viability and cellular constituents of Zymomonas anaerobia and Zymomonas mobilis. J Gen Microbiol 60: 31–42

    Google Scholar 

  • Decker SJ, Lang DR (1978) Membrane bioenergetic parameters in uncoupler-resistant mutants of Bacillus megaterium. J Biol Chem 253: 6738–6743

    Google Scholar 

  • Grinius L, Slušnyté R, Griniuviené B (1975) ATP synthesis driven by protonmotive force imposed across Escherichia coli cell membranes. FEBS Lett 57: 290–293

    Google Scholar 

  • Hempfling WP, Hertzberg EL (1979) Techniques for measurement of oxidative phosphorylation in intact bacteria and in membrane preparations of Escherichia coli. In: Fleischer S, Packer L (eds) Methods in enzymology, vol LV. Academic Press, New York, pp 164–175

    Google Scholar 

  • Ishikawa H, Tanaka H (1992) Effect of ventilation on the production of acetaldehyde by Zymomonas mobilis. J Ferment Bioeng 73: 297–302

    Google Scholar 

  • Ishikawa H, Nobayashi H, Tanaka H (1990) Mechanism of fermentation performance of Zymomonas mobilis under oxygen supply in batch culture. J Ferment Bioeng 70: 34–40

    Google Scholar 

  • Kalnenieks UZ, Pankova LM, Shvinka YE (1987) Protonmotive force in the bacterium Zymomonas mobilis. Biokhimiya 52: 720–723

    Google Scholar 

  • Kashket ER (1982) Stoichiometry of the H+-ATPase of growing and resting, aerobic Escherichia coli. Biochemistry 21: 5534–5538

    Google Scholar 

  • Kedem O, Kaplan SR (1965) Degree of coupling and its relation to efficiency of energy conversion. Trans Faraday Soc 21: 1897–1911

    Google Scholar 

  • Kirk E., Raftos JE, Kuchel PW (1986) Triethyl phosphate as an internal 31P NMR reference in biological samples. J Magn Reson 70: 484–487

    Google Scholar 

  • Maloney PC (1977) Obligatory coupling between proton entry and the synthesis of adenosine 5′-triphosphate in Streptococcus lactis. J Bacteriol 132: 564–575

    Google Scholar 

  • Maloney PC, Kashket ER, Wilson TH (1974) A proton motive force drives ATP synthesis in bacteria. Proc Natl. Acad Sci USA 71: 3896–3900

    Google Scholar 

  • Pankova LM, Shvinka YE, Beker ME, Slava EE (1985) Effect of aeration on Zymomonas mobilis metabolism Mikrobiologiya 54: 141–145

    Google Scholar 

  • Pankova LM, Shvinka JE, Beker MJ (1988) Regulation of intracellular H+ balance in Zymomonas mobilis 113 during the shift from anaerobic to aerobic conditions. Appl Microbiol Biotechnol 28: 583–588

    Google Scholar 

  • Pelroy RA, Whiteley HR (1971) Regulatory properties of acetokinase from Veillonella alcalescens. J Bacteriol 105: 259–267

    Google Scholar 

  • Reyes L, Scopes RK (1991) Membrane-associated ATPase from Zymomonas mobilis; purification and characterization. Biochim Biophys Acta 1068: 174–178

    Google Scholar 

  • Ruhrmann J, Krämer R (1993) Mechanism of glutamate uptake in Zymomonas mobilis. J Bacteriol (in press)

  • Shanks JV, Bailey JE (1988) Phosphate concentrations in Saccharomyces cerevisiae using 31P nuclear magnetic resonance spectroscopy. Biotechnol Bioeng 32: 1138–1152

    Google Scholar 

  • Slater EC (1979) Measurement and importance of phosphorylation potentials: calculation of the free energy of hydrolysis in cells. In: Fleischer S, Packer L (eds) Methods in enzymology, vol 55. Academic Press, New York, pp 235–245

    Google Scholar 

  • Stadtman ER (1952) The net synthesis of acetyl coenzyme A. J Biol Chem 196: 527–534

    Google Scholar 

  • Strohdeicher M, Neuß B, Bringer-Meyer S, Sahm H (1990) Electron transport chain of Zymomonas mobilis. Interaction with the membrane-bound glucose dehydrogenase and identification of ubiquinone 10. Arch Microbiol 154: 536–543

    Google Scholar 

  • Swings J, DeLey J (1977) The biology of Zymomonas. Bacteriol Rev 41: 1–46

    Google Scholar 

  • Tanaka H, Ishikawa H, Osuga K, Takagi Y (1990) Fermentative ability of Zymomonas mobilis under various oxygen supply conditions in batch culture. J Ferment Bioeng 69: 234–239

    Google Scholar 

  • Teather R, Hamelin O, Schwarz H, Overath P (1977) Functional symmetry of the β-galactoside carrier in Escherichia coli. Biochim Biophys Acta 467: 386–395

    Google Scholar 

  • Viikari L (1986) By-product formation in ethanol fermentation by Zymomonas mobilis. Technical Research Centre of Finland. Publication 27

  • Viikari L (1988) Carbohydrate metabolism in Zymomonas. CRC Crit Rev Biotechnol 7: 237–261

    Google Scholar 

  • Wecker MSA, Zall RR (1987) Production of acetaldehyde by Zymomonas mobilis. Appl Environ Microbiol 53: 2815–2820

    Google Scholar 

  • Wright JK, Teather RM, Overath P (1983) Lactose permease of Escherichia coli. In: Fleischer S, Fleischer B (eds) Methods in enzymology, vol 97. Academic Press, New York, pp 158–175

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalnenieks, U., de Graaf, A.A., Bringer-Meyer, S. et al. Oxidative phosphorylation in Zymomonas mobilis . Arch. Microbiol. 160, 74–79 (1993). https://doi.org/10.1007/BF00258148

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00258148

Key words

Navigation