Skip to main content
Log in

Isolation and characterization of a desulforubidin-containing sulfate-reducing bacterium growing with glycolate

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Sulfate-dependent degradation of glycolate was studied with a new sulfate-reducing bacterium, strain PerGlyS, enriched and isolated from marine anoxic sediment. Cells were gram-negative, motile rods with a DNA G+C content of 56.2±0.2 mol%. Cytochromes of theb- andc-type and menaquinone-5 were detected. A sulfite reductase of the desulforubidin-type was identified by characteristic absorption maxima at 279, 396, 545, and 580 nm. The purified desulforubidin is a heteropolymer consisting of three subunits with molecular masses of 42.5 (α), 38.5 (β), and 13 kDa (γ). Strain PerGlyS oxidized glycolate completely to CO2. Lactate, malate, and fumarate were oxidized incompletely, yielding more sulfide and less acetate than expected for typical incomplete oxidation of these substrates. Part of the acetate residues formed was oxidized through the CO-dehydrogenase pathway. The biochemistry of glycolate degradation was investigated in cell-free extracts. A membrane-bound glycolate dehydrogenase, but no glyoxylate-metabolizing enzyme activity was detected; the further degradation pathway is unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DTE :

Dithioerythritol

References

  • Arendsen AF, Verhagen MFJM, Wolbert RBG, Pierik AJ, Stams AJM, Jetten MSM, Hagen WR (1993) The dissimilatory sulfite reductase fromDesulfosarcina variabilis is a desulforubidin containing uncoupled metalated sirohemes andS=9/2 iron-sulfur cluster, Biochemistry 32:10323–10330

    Article  PubMed  CAS  Google Scholar 

  • Bartholomew JW (1962) Variables influencing results, and precise definition of steps in gram staining as a means of standardizing the results obtained. Stain Technol 37:139–155

    PubMed  CAS  Google Scholar 

  • Bartsch RG (1968) Bacterial cytochromes. Annu Rev Microbiol 22:181–200

    Article  PubMed  CAS  Google Scholar 

  • Bateson MM, Ward DM (1988) Photoexcretion and fate of glycolate in a hot spring cyanobacterial mat. Appl Environ Microbiol 54:1738–1743

    PubMed  CAS  Google Scholar 

  • Beck E (1979) Glycolate synthesis. In: Pirson A, Zimmerman MH (eds) Photosynthesis 2, encyclopedia of plant physiology (new series, vol 6). Springer, Berlin Heidelberg New York, pp 327–335

    Google Scholar 

  • Bergmever HU (1974) Methoden der enzymatischen Analyse, vol 1/2. Verlag Chemie, Weinheim, Germany

    Google Scholar 

  • Beudeker RF, Kuenen JG, Codd GA (1981) Glycolate metabolism in the obligate chemolithotrophThiobacillus neapolitanus grown in continuous culture. J Gen Microbiol 126:337–346

    CAS  Google Scholar 

  • Blenden DC, Goldberg HS (1965) Silver impregnation stain forLeptospira and flagella. J Bacteriol 89:899–900

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the determination of microgram quantities of protein utilizing the principle of protein-dye binding, Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brandis-Heep A, Gebhardt NA, Thauer RK, Widdel F, Pfennig N (1983) Anaerobic acetate oxidation to CO2 byDesulfobacter postgatei. 1. Demonstration of all enzymes required for the operation of the citric acid cycle. Arch Microbiol 136:222–229

    Article  CAS  Google Scholar 

  • Brune A, Schink B (1990) A complete citric acid cycle in assimilatory metabolism ofPelobacter acidigallici, a strictly anaerobic, fermenting bacterium. Arch Microbiol 154:394–399

    Article  CAS  Google Scholar 

  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458

    CAS  Google Scholar 

  • Codd GA, Smith BM (1974) Glycolate formation and excretion by the purple photosynthetic bacteriumRhodospirillum rubrum. FEBS Lett 48:105–108

    Article  PubMed  CAS  Google Scholar 

  • Codd GA, Bowien B, Schlegel HG (1976) Glycolate production and excretion byAlcaligenes eutrophus. Arch Microbiol 110:167–171

    Article  PubMed  CAS  Google Scholar 

  • Dickerson RE, Timkovich R (1975) Cytochromec In: Boyer PD (ed) The enzymes, vol 9. Academic Press, New York, pp 397–547

    Google Scholar 

  • Diekert GB, Thauer RK (1978) Carbon monoxide oxidation byClostridium thermoaceticum andClostridium formicoaceticum. J Bacteriol 136:597–606

    PubMed  CAS  Google Scholar 

  • Dimroth P (1981) Characterization of a membrane-bound biotincontaining enzyme: oxaloacetate decarboxylase fromKlebsiella aerogenes. Eur J Biochem 115:353

    Article  PubMed  CAS  Google Scholar 

  • Dixon GH, Kornberg HL (1959) Assay methods for key enzymes of the glyoxylate cycle. Biochem J 72:3p

    Google Scholar 

  • Edenborn HM, Litchfield CD (1985) Glycolate turnover in the water column of the New York Bight apex. Marine Biol 95:459–467

    Article  Google Scholar 

  • Friedrich M, Schink B (1991) Fermentative degradation of glyoxylate via malyl-CoA by a new strictly anaerobic bacterium. Arch Microbiol 156:392–397

    Article  CAS  Google Scholar 

  • Friedrich M, Schink B (1993) Hydrogen formation from glycolate driven by reversed electron transport in membrane vesicles of a syntrophic glycolate-oxidizing bacterium. Eur J Biochem 217:233–240

    Article  PubMed  CAS  Google Scholar 

  • Friedrich M, Schink B (1995) Electron transport phosphorylation driven by glyoxylate respiration with hydrogen as electron donor in membrane vesicles of a glyoxylate-fermenting bacterium. Arch Microbiol 163:268–275

    PubMed  CAS  Google Scholar 

  • Friedrich M, Laderer U, Schink B (1991) Fermentative degradation of glycolic acid by defined syntrophic cocultures. Arch Microbiol 156:398–404

    Article  CAS  Google Scholar 

  • Fründ C, Cohen Y (1992) Diurnal cycles of sulfate reduction under oxic conditions in cyanobacterial mats. Appl Environ Microbiol 58:70–77

    PubMed  Google Scholar 

  • Gregersen T (1978) Rapid method for distinction of gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127

    Article  Google Scholar 

  • Hansen TA (1994) Metabolism of sulfate-reducing prokaryotes. Antonie Van Leeuwenhoek 66:165–185

    Article  PubMed  CAS  Google Scholar 

  • Janssen PH (1990) Fermentation of glycolate by a mixed culture of anaerobic bacteria. Syst Appl Microbiol 13:327–332

    CAS  Google Scholar 

  • Kornberg HL, Gotto AM (1961) The metabolism of C2 compounds in microorganisms. 6. Synthesis of cell constituents from glycolate byPseudomonas sp. Biochem J 78:69–82

    PubMed  CAS  Google Scholar 

  • Kornberg HL, Morris JG (1965) The utilization of glycolate byMicrococcus denitrificans: the beta-hydroxy-aspartate pathway. Biochem J 95:577–586

    PubMed  CAS  Google Scholar 

  • Kornberg HL, Sadler JR (1960) Microbial oxidation of glycolate via a dicarboxylic acid cycle. Nature: 185:153–155

    Article  PubMed  CAS  Google Scholar 

  • Kroppenstedt RM (1985) Fatty acid and menaquinone analysis of actinomycetes and related organisms. In: Goodfellow M, Minnikin E (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 173–199

    Google Scholar 

  • Laemmli UK (1970) Cleavage of the structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lee JP, Yi CS, LeGall J, Peck HD Jr (1973) Isolation of a new pigment, desulforubidin, fromDesulfovibrio desulfuricans (Norway strain) and its role in sulfite reduction. J Bacteriol 115:453–455

    PubMed  CAS  Google Scholar 

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  • Odom JM, Peck HD (1981) Localization of dehydrogenases, reductases and electron transfer components in the sulfate-reducting bacteriumDesulfovibrio gigas. J Bacteriol 147:161–169

    PubMed  CAS  Google Scholar 

  • Pierik AJ, Duyvis MG, Van Helvoort JMLM, Wolbert RBG, Hagen W (1992) The third subunit of desulfoviridin-type dissimilatory sulfite reductases. Eur J Biochem 205:111–115

    Article  PubMed  CAS  Google Scholar 

  • Platen H, Schink B (1987) Methanogenic degradation of acetone by an enrichment culture. Arch Microbiol 149:136–141

    Article  PubMed  CAS  Google Scholar 

  • Postgate JR (1956) Cytochromec 3 and desulfoviridin: pigments of the anaerobeDesulphovibrio desulphuricans. J Gen Microbiol 14:527–545

    Google Scholar 

  • Schink B (1992) Syntrophism among prokaryotes. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The Prokaryotes, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Schink B, Friedrich M (1994) Energetics of syntrophic fatty acid oxidation. FEMS Microbiol Rev 15:85–94

    Article  CAS  Google Scholar 

  • Seki Y, Kobayashi K, Ishimoto M (1979) Biochemical studies on sulfate-reducing bacteria. 15. Separation and comparison of two forms of desulfoviridin. J Biochem (Tokyo) 85:705–711

    CAS  Google Scholar 

  • Spormann AM, Thauer RK (1988) Anaerobic acetate oxidation to CO2 byDesulfotomaculum acetoxidans. Demonstration of enzymes required for the operation of an oxidative acetyl-CoA/carbon monoxide dehydrogenase pathway. Arch Microbiol 150:374–380

    Article  CAS  Google Scholar 

  • Stams AJM, Kremer DR, Nicolay K, Weenk GH, Hansen TA (1984) Pathway of propionate formation inDesulfobulbus propionicus. Arch Microbiol 139:167–173

    Article  CAS  Google Scholar 

  • Stouthamer AH (1979) The search for correlation between theoretical and experimental growth yields. Int Rev Biochem 21:1–47

    CAS  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation of chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    PubMed  CAS  Google Scholar 

  • Trudinger PA (1970) Carbon monoxide-releasing pigment fromDesulfotomaculum nigrificans and its possible relevance to sulfite reduction. J Bacteriol 104:158–170

    PubMed  CAS  Google Scholar 

  • Vogel G, Steinhart R (1976) ATPase ofE. coli: purification, dissociation and reconstitution of the active complex from the isolated subunits, Biochemistry 15:208–216

    Article  PubMed  CAS  Google Scholar 

  • Weston JA, Knowles JC (1973) A soluble CO-binding c-type cytochrome from the marine bacteriumBeneckea natriegens. Biochim Biophys Acta 305:11–18

    Article  PubMed  CAS  Google Scholar 

  • Whittingham CP, Pritchard GG (1963) The production of glycolate during photosynthesis inChlorella. Proc R Soc London [Biol] 157:366–380

    Article  CAS  Google Scholar 

  • Widdel F (1980) Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten Sulfat-reduzierender Bakterien. Ph.D. thesis, Universität Göttingen

  • Widdel F (1988) Microbiology and ecology of sulfate-and sulfurreducing bacteria. In: Zehnder, AJB (ed), Biology of anaerobic microorganisms. Wiley & Sons, New York, pp 469–639

    Google Scholar 

  • Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Widdel F, Hansen TA (1992) Dissimilatory sulfate- and sulfur reducing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Widdel F, Pfennig N (1984) Dissimilatory sulfate- or sulfur-reducing bacteria. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, 9th edn, vol 1. Williams und Wilkins, Baltimore, pp 663–679

    Google Scholar 

  • Wolfe BM, Lui SM, Cowan JA (1994) Desulfoviridin, a multimeric-dissimilatory sulfite reduc-tase fromDesulfovibrio vulgaris (Hildenborough). Purification, characterization, and EPR studies. Eur J Biochem 223:79–89

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Friedrich.

Additional information

Dedicated to Prof. Norbert Pfennig on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedrich, M., Schink, B. Isolation and characterization of a desulforubidin-containing sulfate-reducing bacterium growing with glycolate. Arch. Microbiol. 164, 271–279 (1995). https://doi.org/10.1007/BF02529961

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02529961

Key words

Navigation