Skip to main content
Log in

The occurrence of a modified Entner-Doudoroff pathway in Clostridium aceticum

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Summary

0761 05

  1. 1.

    The pathway of gluconate fermentation by C. aceticum has been investigated. Gluconate is degraded via 2-keto-3-deoxygluconate (KDG)1 and 2-keto-3-deoxy-6-phosphogluconate (KDPG) which is cleaved to yield pyruvate and glyceraldehyde-3-phosphate.

  2. 2.

    Gluconate dehydrase was present in high activity in cells grown on gluconate, but not in cells grown on fructose. The amounts of KDG kinase and KDPG aldolase in gluconate and fructose grown cells did not differ significantly.

  3. 3.

    The three enzymes involved in gluconate breakdown have been characterized with respect to their requirements for reducing agents and metal ions. Gluconate dehydrase requires a sulfhydryl compound and ferrous ions for activity, KDG kinase a divalent metal ion for activity. Sulfhydryl compounds and metal ions are not necessary for KDPG aldolase activity.

  4. 4.

    When suspensions of washed cells of C. aceticum fermented gluconate, KDG was accumulated in the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreesen, J. R.: Säurebildung und Kohlenhydratabbau bei neu isolierten Stämmen von Clostridium aceticum. Diss., Göttingen 1969.

  • Anthony, C., Guest, J. R.: Deferred metabolism of glucose by Clostridium tetanomorphum. J. gen. Microbiol. 54, 277–286 (1968).

    PubMed  Google Scholar 

  • Ashwell, G., Wahba, A. J., Hickman, J.: A new pathway of uronic acid metabolism. Biochim. biophys. Acta (Amst.) 30, 186–187 (1958).

    Article  Google Scholar 

  • Bard, R. C., Gunsalus, I. C.: Glucose metabolism of Clostridium perfringens: Existence of a metalloaldolase. J. Bact. 59, 387–400 (1950).

    PubMed  Google Scholar 

  • Beisenherz, G., Bolze, H. J., Bücher, Th., Czok, R., Garbade, H. K., Meyer-Arendt, E., Pfleiderer, G.: Diphosphofructose-Aldolase, Phosphoglyceraldehyd-Dehydrogenase, Milchsäure-Dehydrogenase, Glycerophosphat-Dehydrogenase and Pyruvat-Kinase aus Kaninchenmuskulatur in einem Arbeitsgang. Z. Naturforsch. 8 B, 555–557 (1953).

    Google Scholar 

  • Blackkolb, F., Schlegel, H. G.: Katabolische Repression und Enzymhemmung durch molekularen Wasserstoff bei Hydrogenomonas. Arch. Mikrobiol. 62, 129–143 (1968).

    PubMed  Google Scholar 

  • Bray, G. A.: A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. Analyt. Biochem. 1, 279–285 (1960).

    Google Scholar 

  • Cohen, S. S.: Gluconokinase. In: Methods of Enzymology (S. P. Colowick and N. O. Kaplan, Eds.), Vol. I, pp. 350–354. New York: Academic Press 1955.

    Google Scholar 

  • Cynkin, M. A., Ashwell, G.: Uronic acid metabolism in bacteria. IV. Purification and properties of 2-keto-3-deoxy-D-gluconokinase in Escherichia coli. J. biol. Chem. 235, 1576–1579 (1960).

    PubMed  Google Scholar 

  • De Ley, J., Doudoroff, M.: The metabolism of D-galactose in Pseudomonas saccharophila. J. biol. Chem. 227, 745–757 (1957).

    PubMed  Google Scholar 

  • De Moss, R. D.: Preparation and determination of gluconic, 2-keto-gluconic, and 5-ketogluconic acids. In: Methods in Enzymology (S. P. Colowick and N. O. Kaplan, Eds.), Vol. III, pp. 233–238. New York: Academic Press 1957.

    Google Scholar 

  • Eisenberg, R. C., Dobrogosz, W. J.: Gluconate metabolism in Escherichia coli. J. Bact. 93, 941–949 (1967).

    PubMed  Google Scholar 

  • El Ghazzawi, E.: Neuisolierung von Clostridium aceticum Wieringa und stoffwechselphysiologische Untersuchungen. Arch. Mikrobiol. 57, 1–19 (1967).

    Google Scholar 

  • Farmer, J. J., Eagon, R. G.: Aldohexuronic acid catabolism by a soil Aeromonas. J. Bact. 97, 97–106 (1969).

    PubMed  Google Scholar 

  • Fraenkel, D. G., Horecker, B. L.: Pathways of D-glucose metabolism in Salmonella typhimurium. J. biol. Chem. 239, 2765–2771 (1964).

    PubMed  Google Scholar 

  • Glock, G. E.: Glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. In: Handbuch der physiologisch- und pathologisch-chemischen Analyse (Hoppe-Seyler/Thierfelder) Vol. VI A, pp. 414–423. Berlin-Heidelberg-New York: Springer 1964.

    Google Scholar 

  • Imanaga, Y.: Metabolism of D-glucosamine. III. Enzymatic degradation of D-glucosamine acid. J. Biochem. 45, 647–651 (1958).

    Google Scholar 

  • Isbell, H. S.: Aldonic acids by oxidation of aldoses with bromine; lead D-xylonate. In: Methods in Carbohydrate Chemistry (R. L. Whistler and M. L. Wolfrom, Eds.) Vol. II, pp. 13–14. New York: Academic Press 1963.

    Google Scholar 

  • Karlsson, J. L., Volcani, B. E., Barker, H. A.: The nutritional requirements of Clostridium aceticum. J. Bact. 56, 781–782 (1948).

    Google Scholar 

  • Kersters, K., De Ley, J.: The occurrence of the Entner-Doudoroff pathway in bacteria. Antonie v. Leeuwenhoek 34, 393–408 (1968).

    Google Scholar 

  • Kersters, K., Matsubara, J. K.: A new pathway of D-gluconate metabolism in the Achromobacter-Alcaligenes group. FEBS Abstracts of Communications, Madrid 1969, p. 372.

  • Kilgore, W. W., Starr, M. P.: Catabolism of galacturonic and glucuronic acids by Erwinia carotovora. J. biol. Chem. 234, 2227–2235 (1959).

    PubMed  Google Scholar 

  • Kovachevich, R., Wood, W. A.: Carbohydrate metabolism by Pseudomonas fluorescens. III. Purification and properties of a 6-phosphogluconate dehydrase. J. Biol. Chem. 213, 745–756 (1955a).

    PubMed  Google Scholar 

  • Kovachevich, R., Wood, W. A.: Carbohydrate metabolism by Pseudomonas fluorescens. IV. Purification and properties of 2-keto-3-deoxy-6-phosphogluconate aldolase. J. biol. Chem. 213, 757–767 (1955b).

    PubMed  Google Scholar 

  • Lee, C. K., Ordal, Z. J.: Regulatory effect of pyruvate on the glucose metabolism of Clostridium thermosaccharolyticum. J. Bact. 94, 530–536 (1967).

    PubMed  Google Scholar 

  • Linke, H. A. B.: Über den Abbau von Fructose durch Clostridium aceticum. Diss., Göttingen 1967.

  • Martinez, R. J., Rittenberg, S. C.: Glucose dissimilation by Clostridium tetani. J. Bact. 77, 156–163 (1959).

    PubMed  Google Scholar 

  • Merrick, J. M., Roseman, S.: Glucosamine metabolism. VI. Glucosaminic acid dehydrase. J. biol. Chem. 235, 1274–1280 (1960).

    Google Scholar 

  • Paege, L. M., Gibbs, M., Bard, R. C.: Fermentation of 14C-labelled glucose by Clostridium perfringens. J. Bact. 72, 65–67 (1956).

    PubMed  Google Scholar 

  • Pfennig, N., Lippert, K. D.: Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch. Mikrobiol. 55, 245–256 (1966).

    Google Scholar 

  • Portsmouth, D.: Synthesis and properties of 3,6-dideoxyhexulosonic acids and related compounds. A convenient preparation of 3-deoxy-D-erythrohexulosonic acid (3-deoxy-2-keto-D-gluconic acid). Steroselectivity of nucleophilic addition to triose carbonyl. Carbohyd. Res. 8, 193–204 (1968).

    Article  Google Scholar 

  • Rose, I. A.: Acetate kinase of bacteria (Acetokinase). In: Methods in Enzymology (S. P. Colowick and N. O. Kaplan, Eds.), Vol. I, pp. 591–595. New York: Academic Press 1955.

    Google Scholar 

  • Shankar, K., Bard, R. C.: Effect of metallic ions on the growth, morphology, and metabolism of Clostridium perfringens. I. Magnesium. J. Bact. 69, 436–443 (1955).

    PubMed  Google Scholar 

  • Shemanova, F. G., Blagoveschchenskii, V. A.: Carbohydrate metabolism in Clostridium oedematiens (C. novyi). Chem. Abstr. 52, 2160 (1958).

    Google Scholar 

  • Shuster, C. W., Doudoroff, M.: Purification of 2-keto-3-deoxy-6-phosphohexonate aldolase of Pseudomonas saccharophila. Arch. Mikrobiol. 59, 279–286 (1967).

    PubMed  Google Scholar 

  • Simmons, J. R., Costilow, R. N.: Enzymes of glucose and pyruvate catabolism in cells, spores, and germinated spores of Clostridium botulinum. J. Bact. 84, 1274–1281 (1962).

    PubMed  Google Scholar 

  • Smiley, J. D., Ashwell, G.: Uronic acid metabolism in bacteria. III. Purification and properties of D-altronic and D-mannonic acid dehydrases in Escherichia coli. J. biol. Chem. 235, 1571–1575 (1960).

    PubMed  Google Scholar 

  • Stouthamer, A. H.: Glucose and galactose metabolism in Gluconobacter liquefaciens. Biochim. biophys. Acta (Amst.) 48, 484–500 (1961).

    Article  Google Scholar 

  • Szymona, M., Doudoroff, M.: Carbohydrate metabolism in Rhodopseudomonas spheroides. J. gen. Microbiol. 22, 167–183 (1960).

    Google Scholar 

  • Weimberg, R., Doudoroff, M.: The oxidation of L-arabinose by Pseudomonas saccharophila. J. biol. Chem. 217, 607–624 (1965).

    Google Scholar 

  • Weissbach, A., Hurwitz, J.: The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia coli B. J. biol. Chem. 234, 705–709 (1959).

    PubMed  Google Scholar 

  • Wood, H. G.: Fermentation of 3,4-14C and 1-14C labelled glucose by Clostridium thermoaceticum. J. biol. Chem. 199, 579–583 (1952).

    PubMed  Google Scholar 

  • —, Gest, H.: Determination of formate. In: Methods in Enzymology (S. P. Colowick and N. O. Kaplan, Eds.), Vol. III, pp. 285–292. New York: Academic Press 1957.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreesen, J.R., Gottschalk, G. The occurrence of a modified Entner-Doudoroff pathway in Clostridium aceticum . Archiv. Mikrobiol. 69, 160–170 (1969). https://doi.org/10.1007/BF00409760

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00409760

Keywords

Navigation