Skip to main content
Log in

Ferrihaemoglobin formation by amyl nitrite and sodium nitrite in different species in vivo and in vitro

  • Original Investigations
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The ferrihaemoglobin (HbFe3+) formation by amyl nitrite (AN) or sodium nitrite (NaNO2) was studied in different species including man, in vivo and in vitro. In in vivo studies AN was administered intravenously (i.v.), intramuscularly (i.m.), by inhalation, or orally. NaNO2 was injected i.v. AN i.v. produced HbFe3+ much more rapidly than NaNO2 in dogs, cats, rabbits, and rats. In dogs, i.m. injection of AN was followed by a very slow linear increase in the HbFe3+ content. Inhalation of AN did not lead to HbFe3+ formation in dogs unless it was rebreathed in a closed (bag) or not completely open (gas mask) system. HbFe3+ was produced by oral AN in dogs, the effect being enhanced by addition of DMSO. Inhalation of AN by human volunteers in a gas mask and from ampoules crushed close to the nose did not induce haemoglobin oxidation to a practically significant extent, but it was associated with headache, tiredness, dizziness, and a fall in blood pressure. In in vitro studies, in contrast to NaNO2, AN produced HbFe3+ instantaneously in erythrocytes of various species and in purified human haemoglobin. AN 1 mol yielded 2 mol Fe3+. Only 20% of the oxygen released during the oxidation of haemoglobin by AN or NaNO2 was recovered. In 0.2 M phosphate buffer, pH 7.4, 0.01 mol O2/mol AN was consumed. CO2 was released in the presence of AN, but not of NaNO2, from blood, plasma, and 0.02 M NaHCO3 solution. The ratio (lactate)/(pyruvate) decreased when HbFe3+ was formed by AN or NaNO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agar NS, Harley YD (1972) Erythrocytic methaemoglobin reductases of various mammalian species. Experientia 28: 1248–1249

    Google Scholar 

  • Bastian G, Mercker H (1959) Zur Frage der Zweckmäßigkeit der Inhalation von Amylnitrit in der Behandlung der Cyanidvergiftung. Naunyn-Schmiedeberg's Arch Exp Pathol Pharmakol 237: 285–295

    Google Scholar 

  • Chen KK, Rose CL, Clowes GHA (1933) Amyl nitrite and cyanide poisoning. JAMA 100: 1920–1922

    Google Scholar 

  • Darling RC, Roughton FJW (1942) The effect of methemoglobin on the equilibrium between oxygen and hemoglobin. Am J Physiol 137: 56–68

    Google Scholar 

  • Eyer P, Hertle H, Kiese M, Klein G (1975) Kinetics of ferrihemoglobin formation by some reducing agents, and the role of hydrogen peroxide. Mol Pharmacol 11: 326–334

    Google Scholar 

  • Gelinsky G (1940) Studien über Methämoglobinbildung. XIX. Mitteilung. Rückbildung des Methämoglobins bei verschiedenen Tierarten. Naunyn-Schmiedeberg's Arch Exp Pathol Pharmakol 195: 460–464

    Google Scholar 

  • Greenberg LA, Lester D, Haggard HW (1943) The reaction of hemoglobin with nitrite. J Biol Chem 151: 665–673

    Google Scholar 

  • Hanzlik PJ, Richardson AP (1934) Cyanide antidotes. JAMA 102: 1740–1745

    Google Scholar 

  • Hasegawa H, Sato M (1970) Studies on nitroglycol poisoning. Mechanism of methemoglobin formation. Ind Health 8: 88–98

    Google Scholar 

  • Heubner W (1913) 14. Studien zur Methämoglobinbildung. Arch Exp Pathol Pharmakol 72: 239–281

    Google Scholar 

  • Hug E (1932) L'intoxication cyanhydrique. Action antidote du bleu de méthylène, du nitrite de sodium et du sulfure de sodium. C R Séances Soc Biol (Paris) 111: 89–90

    Google Scholar 

  • Jandorf BJ, Bodansky O (1946) Therapeutic and prophylactic effect of methemoglobinemia in inhalation poisoning by hydrogen cyanide and cyanogen chloride. J Ind Hyg Toxicol 28: 125–132

    Google Scholar 

  • Jung F, Remmer H (1949) Über die Umsetzung zwischen Nitrit und Hämoglobin. Naunyn-Schmiedeberg's Arch Exp Pathol Pharmakol 206: 459–474

    Google Scholar 

  • Kiese M (1944) Die Reduktion des Hämoglobins. Biochem Z 316: 264–294

    Google Scholar 

  • Kiese M (1974) Methemoglobinemia: a comprehensive treatise. Causes, consequences, and correction of increased contents of ferrihemoglobin in blood. CRC Press Cleveland, Ohio

    Google Scholar 

  • Kiese M, Weger N (1969) Formation of ferrihemoglobin with aminophenols in the human for the treatment of cyanide poisoning. Eur J Pharmacol 7: 97–105

    Google Scholar 

  • Klaassen CD (1980) Nonmetallic environmental toxicants: air pollutants, solvents and vapors, and pesticides. In: Gilman AG, Goodman LS, Gilman A (eds) Goodman and Gilman's The pharmacological basis of therapeutics. Macmillan Publishing Co, New York

    Google Scholar 

  • Klimmek R, Krettek C (1988) Effects of amyl nitrite on circulation, respiration, and blood homoeostasis in cyanide poisoning. Arch Toxicol 62: 161–166

    Google Scholar 

  • Klimmek R, Fladerer H, Szinicz L, Weger N, Kiese M (1979) Effects of 4-dimethylaminophenol and Co2EDTA on circulation, respiration, and blood homoeostasis in dogs. Arch Toxicol 42: 75–84

    Google Scholar 

  • Krantz JC Jr, Carr CJ, Forman SE (1938) Alkyl nitrites. II. The pharmacology of 2-ethyl-n-hexyl-1-nitrite. J Pharmacol 64: 302–313

    Google Scholar 

  • Marshall CR (1945) The mode of action of nitric esters. J Pharmacol Exp Ther 83: 106–119

    Google Scholar 

  • Marshall W, Marshall CR (1945) The action of nitrites on blood. J Biol Chem 158: 187–208

    Google Scholar 

  • Meier R (1925–26) 39. Studien über Methämoglobinbildung. 7. Mitteilung: Nitrit. Naunyn-Schmiedeberg's Arch Exp Pharmakol 110: 241–264

    Google Scholar 

  • Moeschlin S (1986) Klinik und Therapie der Vergiftungen. 7. neubearbeitete und erweiterte Auflage. Georg Thieme Verlag Stuttgart New York

    Google Scholar 

  • Paulet G (1954) Sur la valeur du nitrite d'amyl dans le traitement de l'intoxication cyanhydrique. C R Séances Soc Biol 148: 1009–1014

    Google Scholar 

  • Paulet G (1957) Valeur des sels organiques de cobalt dans le traitement de l'intoxication cyanhydrique. C R Soc Biol 151: 1932–1935

    Google Scholar 

  • Perutz MF, Fersht AR, Simon SR, Roberts GCK (1974) Influence of globin structure on the state of heme. II. Allosteric transitions in methemoglobin. Biochemistry 13: 2174–2186

    Google Scholar 

  • Rumack BH, Lovejoy FH Jr (1986) Clinical toxicology. In: Casarett and Doull's Toxicology. The basic science of poisons. Macmillan Publishing Co, New York

    Google Scholar 

  • Smith JE, Beutler E (1966) Methemoglobin formation and reduction in man and various animal species. Am J Physiol 210: 347–350

    Google Scholar 

  • Smith RP (1970) Some features of the reaction between cobalt-nitrite and hemoglobin. Toxicol Appl Pharmacol 17: 634–647

    Google Scholar 

  • Wendel WB (1931) Oxidation of lactate by methemoglobin in erythrocytes with regeneration of hemoglobin. Proc Soc Exp Biol Med 28: 401–403

    Google Scholar 

  • Wirth W, Gloxhuber (1985) Toxikologie, 4th revised edn. Georg Thieme Verlag, Stuttgart New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klimmek, R., Krettek, C. & Werner, H.W. Ferrihaemoglobin formation by amyl nitrite and sodium nitrite in different species in vivo and in vitro. Arch Toxicol 62, 152–160 (1988). https://doi.org/10.1007/BF00570133

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00570133

Key words

Navigation