Skip to main content
Log in

Metabolism of 2-thiobenzothiazoles in the rat

Urinary, fecal and biliary metabolites of 2-benzothiazyl sulfenamides

  • Original Investigation
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Metabolic fates of 2-benzothiazyl sulfenamides, N-oxydiethylene-2-benzothiazyl sulfenamide and N-cyclohexyl-2-benzothiazyl sulfenamide in rats were studied using tracer technique. These compounds given orally to rats were excreted rapidly in the urine and feces. Five urinary metabolites, 2-mercaptobenzothiazole (MBT), its three conjugates, mercapturate, glucuronide and sulfate, and 2,2′-dibenzothiazyl disulfide (BTDS) were confirmed. Furthermore, BTDS was found as a fecal metabolite. The sulfenamides were partly transformed in the stomach to BTDS, which was predominantly excreted into the feces. In the liver, the sulfenamides were mainly transformed to MBT and its conjugates. The S-glucuronide and S-sulfate conjugates were predominantly excreted into the bile. Mechanisms were discussed concerning the metabolite formation of sulfenamide derivatives in vivo and in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adachi T, Tanaka A, Yamaha T (1989) Absorption, distribution, metabolism and excretion of CBS in rats. Radioisotopes 38: 255–258

    PubMed  CAS  Google Scholar 

  • Bartoli GM, Sies H (1978) Reduced and oxidized glutathione efflux from liver. FEBS Lett 86: 89–91

    Article  PubMed  CAS  Google Scholar 

  • Brigham MP, Stein WH, Moore S (1960) The concentrations of cysteine and cystine in human blood plasma. J Clin Invest 39: 1633–1638

    Article  PubMed  CAS  Google Scholar 

  • Chasseaud LF (1976) Conjugation with glutathione and mercapturic acid excretion. In: Arias IM, Jakoby WB (eds) Glutathione metabolism and function. Raven Press, New York, pp 77–114

    Google Scholar 

  • Clare DA, Horton HR, Stabel TJ, Swaisgood HE, Lecce JG (1984) Tissue distribution of mammalian sulfhydryl oxidase. Arch Biochem Biophys 230: 138–145

    Article  PubMed  CAS  Google Scholar 

  • Colucci DF, Buyske DA (1965) The biotransformation of a sulfonamide to a mercaptan and to mercapturic acid and glucuronide conjugates. Biochem Pharmacol 14: 457–466

    Article  PubMed  CAS  Google Scholar 

  • Davis FA (1973) Chemistry of the sulfur-nitrogen bond in sulfenamides. Int J Sulfur Chem 8: 71–81

    CAS  Google Scholar 

  • El Dareer SM, Kalin JR, Tillery KF, Hill DL, Barnett JW (1989) Disposition of 2-mercaptobenzothiazole and 2-mercaptobenzothiazole disulphide in rats dosed intravenously, orally, and topically and in guinea-pigs dosed topically. J Toxicol Environ Health 27: 65–84

    Article  PubMed  Google Scholar 

  • Fregert S (1969) Cross-sensitivity pattern of 2-mercaptobenzothiazole (MBT). Acta Derm Venereol 49: 45–48

    Google Scholar 

  • Fukuoka M, Tanaka A (1987) The metabolic origin of the sulfur atom in the sulfhydryl group of 2-thiobenzothiazole metabolites derived from benzothiazyl sulfenamide in the rat. Arch Toxicol 61: 158–160

    Article  PubMed  CAS  Google Scholar 

  • Gillham B (1971) The reaction of aralkyl sulphate esters with glutathione catalysed by rat liver preparations. Biochem J 121: 667–672

    PubMed  CAS  Google Scholar 

  • Griffith OW, Meister A (1979) Glutathione: interorgan translocation, turnover, and metabolism. Proc Natl Acad Sci USA 26: 5606–5610

    Article  Google Scholar 

  • Hashimoto K, Sasaki Y, Ohara Y, Matsuzawa T (1978) Absorption, distribution and excretion of 2-mercaptobenzothiazole in carp. Bull Jpn Soc Sci Fish 44: 623–629

    CAS  Google Scholar 

  • Jakoby WB, Habig WH (1980) Glutathione transferase. In: Jakoby WB (ed) Enzymatic basis of detoxication, vol. 2. Academic Press, New York, pp 63–94

    Google Scholar 

  • Kaniwa M, Isama K, Nakamura A, Kantoh H, Itoh M, Miyoshi K, Saito S, Shono M (1994) Identification of causative chemicals of allergic contact dermatitis using a combination of patch testing in patients and chemical analysis. Contact Dermatitis 30: 26–34

    Article  PubMed  CAS  Google Scholar 

  • Kice JL, Cleveland JP (1973) Nucleophilic substitution reactions involving sulfenic acids and sulfenyl derivatives. The nucleophile-and acid-catalyzed oxygen-18 exchange of phenyl benzenethiolsulfinate. J Am Chem Soc 95: 104–109

    Article  CAS  Google Scholar 

  • Korhonen A, Hemminki K, Vaino H (1982) Embryotoxicity of benzothiazoles, benzenesulfohydrazide, and dithiodimorpholine to the chicken embryo. Arch Environ Contam Toxicol 11: 753–759

    Article  PubMed  CAS  Google Scholar 

  • Lash LH, Jones DP (1983) Characterization of the membrane-associated thiol oxidase activity of rat small-intestinal epithelium. Arch Biochem Biophys 225: 344–352

    Article  PubMed  CAS  Google Scholar 

  • Nagamatsu K, Kido Y, Urakubo G, Aida Y, Ikeda Y, Suzuki Y (1979) Absorption, distribution, excretion and metabolism of 2-mercaptobenzothiazole in guinea pig. Jpn J Toxicol Environ Health 25: 59–65 (Japanese)

    CAS  Google Scholar 

  • National Institute for Occupational Safety and Health (1980) Registry of Toxic Effects of Chemical Substances. 1981–1982, vol. 2, DL5950000

  • Parke DV (ed) (1968) Absorption, excretion and tissue distribution. In: The biochemistry of foreign compounds. Pergamon Press, Oxford, London, pp 11–33

    Google Scholar 

  • Searles S, Nukina S (1959) Cleavage and rearrangement of sulfonamides. Chem Rev 59: 1077–1103

    Article  CAS  Google Scholar 

  • Smith HW (1965) Observations on the flora of the alimentary tract of animals and factors affecting its composition. J Pathol Bacteriol 89: 95–122

    Article  PubMed  CAS  Google Scholar 

  • Stahl E (ed) (1969) Thin-layer chromatography, a laboratory handbook (Ashworth MRF translator). Springer, Berlin Heidelberg New York, pp 885

    Google Scholar 

  • Sumino K, Shibata T, Mio T, Hatayama F, Yamamoto R (1980) Studies on environmental contamination of 2-mercaptobenzothiazole. Jpn J Publ Health 27: 773

    Google Scholar 

  • Szajewski RP, Whitesides GM (1980) Rate constants and equilibrium constants for thiol-disulfide interchange reactions involving oxidized glutathione. J Am Chem Soc 102: 2011–2025

    Article  CAS  Google Scholar 

  • Tanaka A, Adachi T, Takahashi T, Yamaha T (1975) Biochemical studies on phthalic esters I. Elimination, distribution and metabolism of DEHP in rats. Toxicology 4: 253–264

    Article  PubMed  CAS  Google Scholar 

  • Tanaka A, Fukuoka M, Adachi T, Yamaha T (1986) Syntheses of carbon-14 and sulfur-35 labeled 2-(morpholinothio)benzothiazoles and carbon-14 labeled 2-(cyclohexylaminothio)benzothiazoles. J Label Compd Radiopharm 23: 405–413

    Article  CAS  Google Scholar 

  • Tateishi M, Shimizu H (1980) Cysteine conjugate ß-lyase. In: Jakoby WB (ed) Enzymatic basis of detoxication, vol. 2. Academic Press, New York, pp 121–130

    Google Scholar 

  • Thornton GHM, Clifton JA (1959) Estimation of gastric hydrochloric acid secretion in rats by a test technique. Am J Physiol 197: 263–268

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukuoka, M., Satoh, M. & Tanaka, A. Metabolism of 2-thiobenzothiazoles in the rat. Arch Toxicol 70, 1–9 (1995). https://doi.org/10.1007/s002040050241

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002040050241

Key words

Navigation